Thermal annealing of nuclear graphite during in-situ electron irradiation

We have investigated the in-situ electron irradiation of nuclear graphite within a 200 kV transmission electron microscope at temperatures between 83 K and 473 K. For each temperature, nuclear grade Pile Grade A graphite specimens were subject to a fluence of ca. 1022 electrons cm−2, and transmissio...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 115; pp. 659 - 664
Main Authors Freeman, H.M., Scott, A.J., Brydson, R.M.D.
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.05.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We have investigated the in-situ electron irradiation of nuclear graphite within a 200 kV transmission electron microscope at temperatures between 83 K and 473 K. For each temperature, nuclear grade Pile Grade A graphite specimens were subject to a fluence of ca. 1022 electrons cm−2, and transmission electron micrographs and selected area diffraction patterns were collected during electron beam exposure. By considering a critical fluence, at which the graphite (002) d-spacing increased by 10%, a temperature threshold for damage has been determined. Below ca. 420 K, electron irradiation caused significant net structural damage: fragmenting basal planes and producing a tortuous nanotexture. Above this temperature the effects of thermal annealing became more prevalent, maintaining the structure even at much higher fluences. We have derived activation energies for the annealing processes operative in these two temperature regimes and, via a comparison with theoretical predictions have, for the first time, associated these with specific recovery processes. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2017.01.057