Preparation of High Quality Indium Tin Oxide Film on a Microbial Cellulose Membrane Using Radio Frequency Magnetron Sputtering

Microbial cellulose (MC) membranes produced by Acetobacter xylinum NUST4.1,were used as flexible substrates for the fabrication of transparent indium tin oxide (ITO) electrodes.Transparent and conductive ITO thin films were deposited on MC membrane at room temperature using radio frequency (RF) magn...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of chemical engineering Vol. 19; no. 2; pp. 179 - 184
Main Author 杨加志 赵成刚 刘晓丽 于俊伟 孙东平 唐卫华
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2011
Subjects
Online AccessGet full text
ISSN1004-9541
2210-321X
DOI10.1016/S1004-9541(11)60151-1

Cover

Loading…
More Information
Summary:Microbial cellulose (MC) membranes produced by Acetobacter xylinum NUST4.1,were used as flexible substrates for the fabrication of transparent indium tin oxide (ITO) electrodes.Transparent and conductive ITO thin films were deposited on MC membrane at room temperature using radio frequency (RF) magnetron sputtering.The optimum ITO deposition conditions were achieved by examining crystalline structure,surface morphology and op-toelectrical characteristics with X-ray diffraction (XRD),scanning electron microscopy (SEM),atomic force mi-croscopy (AFM),and UV spectroscopy.The sheet resistance of the samples was measured with a four-point probe and the resistivity of the film was calculated.The results reveal that the preferred orientation of the deposited ITO crystals is strongly dependent upon with oxygen content (O2/Ar,volume ratio) in the sputtering chamber.And the ITO crystalline structure directly determines the conductivity of ITO-deposited films.High conductive [sheet resis-tance ~120 Ω·square-1 (Ω·sq-1)] and transparent (above 76%) ITO thin films (240 nm thick) were obtained with a moderate sputtering power (about 60 W) and with an oxygen flow rate of 0.25 ml·min-1 (sccm) during the deposi-tion.These results show that the ITO-MC electrodes can find their potential application in optoelectrical devices.
Bibliography:thin films; magnetron sputtering; microbial cellulose membrane; optical properties; indium tin oxide
YANG Jiazhi 1,ZHAO Chenggang2,LIU Xiaoli1,YU Junwei1,SUN Dongping1,and TANG Weihua 1,1 School of Chemistry and Chemical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China 2 School of Mechanical Engineering,Anyang Institute of Technology,Anyang 455000,China
Microbial cellulose (MC) membranes produced by Acetobacter xylinum NUST4.1,were used as flexible substrates for the fabrication of transparent indium tin oxide (ITO) electrodes.Transparent and conductive ITO thin films were deposited on MC membrane at room temperature using radio frequency (RF) magnetron sputtering.The optimum ITO deposition conditions were achieved by examining crystalline structure,surface morphology and op-toelectrical characteristics with X-ray diffraction (XRD),scanning electron microscopy (SEM),atomic force mi-croscopy (AFM),and UV spectroscopy.The sheet resistance of the samples was measured with a four-point probe and the resistivity of the film was calculated.The results reveal that the preferred orientation of the deposited ITO crystals is strongly dependent upon with oxygen content (O2/Ar,volume ratio) in the sputtering chamber.And the ITO crystalline structure directly determines the conductivity of ITO-deposited films.High conductive [sheet resis-tance ~120 Ω·square-1 (Ω·sq-1)] and transparent (above 76%) ITO thin films (240 nm thick) were obtained with a moderate sputtering power (about 60 W) and with an oxygen flow rate of 0.25 ml·min-1 (sccm) during the deposi-tion.These results show that the ITO-MC electrodes can find their potential application in optoelectrical devices.
11-3270/TQ
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1004-9541
2210-321X
DOI:10.1016/S1004-9541(11)60151-1