The effect of silver and copper nanoparticles on the growth and mycorrhizal colonisation of Scots pine (Pinus sylvestris L.) in a container nursery experiment
Recent research points to the possibility of nanoparticles being used as fertilisers, growth stimulators, and promoters of plant resistance or pesticides. In this study, we sought to determine the influence of nanoparticles of silver and copper (AgNPs and CuNPs) on growth parameters and spontaneous...
Saved in:
Published in | IForest (Viterbo) Vol. 11; no. 5; pp. 690 - 697 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Potenza
The Italian Society of Silviculture and Forest Ecology (SISEF)
01.10.2018
Italian Society of Silviculture and Forest Ecology (SISEF) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Recent research points to the possibility of nanoparticles being used as fertilisers, growth stimulators, and promoters of plant resistance or pesticides. In this study, we sought to determine the influence of nanoparticles of silver and copper (AgNPs and CuNPs) on growth parameters and spontaneous mycorrhizal colonisation of roots in 2-year-old container-grown seedlings of Scots pine. Foliar applications of nanoparticles were made through two growing seasons, four times a season, at concentrations of 0, 5, 25 and 50 ppm. Comparisons of the ultrastructures characterising the needles, stems and roots of the treated or untreated pines were conducted with transmission electron microscopy (TEM). The deployed CuNPs stimulated mycorrhizal colonisation at all concentrations, although the growth of seedlings was only promoted at a concentration of 25 ppm. Higher concentrations of AgNPs (25 and 50 ppm) inhibited the formation of mycorrhizae, though the lowest concentration (5 ppm) produced an increase in both mycorrhizal colonisation and the dry mass of roots. The species of ectomycorrhizal fungi found were Thelephora terrestris, Suillus bovinus and Sphaerosporella brunnea. The TEM results comparing treated and control (untreated) needles revealed changes in the chloroplasts from lens-shaped to spherical. Furthermore, an increase in the number of plastoglobules and the presence of large osmophilic globules in the cytoplasm associated solely with the needles of pines receiving 50 ppm nanoparticles were observed. In contrast, ultrastructural changes in stems and roots associated with the applications of NPs were not found. Overall, the results indicated that CuNPs and AgNPs could be used as stimulators of growth in general, and mycorrhizal colonisation in particular, among container-grown Scots pines. However, further work is needed to determine their optimal doses and concentrations. |
---|---|
ISSN: | 1971-7458 1971-7458 |
DOI: | 10.3832/ifor2855-011 |