An estimating equation approach to dimension reduction for longitudinal data

Sufficient dimension reduction has been extensively explored in the context of independent and identically distributed data. In this article we generalize sufficient dimension reduction to longitudinal data and propose an estimating equation approach to estimating the central mean subspace. The prop...

Full description

Saved in:
Bibliographic Details
Published inBiometrika Vol. 103; no. 1; p. 189
Main Authors Xu, Kelin, Guo, Wensheng, Xiong, Momiao, Zhu, Liping, Jin, Li
Format Journal Article
LanguageEnglish
Published England 01.03.2016
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Sufficient dimension reduction has been extensively explored in the context of independent and identically distributed data. In this article we generalize sufficient dimension reduction to longitudinal data and propose an estimating equation approach to estimating the central mean subspace. The proposed method accounts for the covariance structure within each subject and improves estimation efficiency when the covariance structure is correctly specified. Even if the covariance structure is misspecified, our estimator remains consistent. In addition, our method relaxes distributional assumptions on the covariates and is doubly robust. To determine the structural dimension of the central mean subspace, we propose a Bayesian-type information criterion. We show that the estimated structural dimension is consistent and that the estimated basis directions are root-[Formula: see text] consistent, asymptotically normal and locally efficient. Simulations and an analysis of the Framingham Heart Study data confirm the effectiveness of our approach.
ISSN:0006-3444
DOI:10.1093/biomet/asv066