Surface nature of nanoparticle zinc-titanium oxide aerogel catalysts
Nanoparticle zinc-titanium oxide materials were prepared by the aerogel approach. Their structure, surface state and reactivity were investigated. Zinc titanate powders formed at higher zinc loadings possessed a higher surface area and smaller particle size. X-ray photoelectron spectroscopy (XPS) re...
Saved in:
Published in | Applied surface science Vol. 254; no. 15; pp. 4500 - 4507 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
30.05.2008
Elsevier Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Nanoparticle zinc-titanium oxide materials were prepared by the aerogel approach. Their structure, surface state and reactivity were investigated. Zinc titanate powders formed at higher zinc loadings possessed a higher surface area and smaller particle size. X-ray photoelectron spectroscopy (XPS) revealed a stronger electronic interaction between Zn and Ti atoms in the mixed oxide structure and showed the formation of oxygen vacancy due to zinc doping into titania or zinc titanate matrices. The 8–45
nm aerogel particles were evaluated as catalysts for methanol oxidation in an ambient flow reactor. Carbon dioxide was favorably produced on the oxides with anion defects. Titanium based oxides exhibited a high selectivity to dimethyl ether, so that a strong Lewis acidic character suggested for the catalysts was associated primarily with the Ti
4+ center. Both methanol conversion and dimethyl ether formation rates increased with increasing the zinc content added to the oxide support. Results demonstrate that cubic zinc titanate phases produce new Lewis acid sites having also a higher reactivity and that the nature of the catalytic surface transforms from Lewis acidic to basic characters due to the presence of reactive oxygen vacancies. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0169-4332 1873-5584 |
DOI: | 10.1016/j.apsusc.2008.01.024 |