Orientation Cues-Aware Facial Relationship Representation for Head Pose Estimation via Transformer

Head pose estimation (HPE) is an indispensable upstream task in the fields of human-machine interaction, self-driving, and attention detection. However, practical head pose applications suffer from several challenges, such as severe occlusion, low illumination, and extreme orientations. To address t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 32; pp. 6289 - 6302
Main Authors Liu, Hai, Zhang, Cheng, Deng, Yongjian, Liu, Tingting, Zhang, Zhaoli, Li, You-Fu
Format Journal Article
LanguageEnglish
Published New York IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Head pose estimation (HPE) is an indispensable upstream task in the fields of human-machine interaction, self-driving, and attention detection. However, practical head pose applications suffer from several challenges, such as severe occlusion, low illumination, and extreme orientations. To address these challenges, we identify three cues from head images, namely, critical minority relationships, neighborhood orientation relationships, and significant facial changes. On the basis of the three cues, two key insights on head poses are revealed: 1) intra-orientation relationship and 2) cross-orientation relationship. To leverage two key insights above, a novel relationship-driven method is proposed based on the Transformer architecture, in which facial and orientation relationships can be learned. Specifically, we design several orientation tokens to explicitly encode basic orientation regions. Besides, a novel token guide multi-loss function is accordingly designed to guide the orientation tokens as they learn the desired regional similarities and relationships. Experimental results on three challenging benchmark HPE datasets show that our proposed TokenHPE achieves state-of-the-art performance. Moreover, qualitative visualizations are provided to verify the effectiveness of the token-learning methodology.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2023.3331309