Optimal tree access by elementary and composite templates in parallel memory systems

In this paper, we study efficient strategies for mapping onto parallel memory systems complete trees that are accessed by fixed templates (like complete subtrees, paths, or any combinations their of). These mappings are evaluated with respect to the following criteria: (1) the largest number of data...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on parallel and distributed systems Vol. 13; no. 4; pp. 399 - 412
Main Authors Auletta, V., Das, S.K., De Vivo, A., Pinotti, M.C., Scarano, V.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2002
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we study efficient strategies for mapping onto parallel memory systems complete trees that are accessed by fixed templates (like complete subtrees, paths, or any combinations their of). These mappings are evaluated with respect to the following criteria: (1) the largest number of data items that can be accessed in parallel without memory conflicts; (2) the number of memory conflicts that can occur when accessing templates of size equal to the number of available memory modules, thereby exploiting the full parallelism of the system; (3) the complexity of the memory addressing scheme, i.e., the cost of retrieving the module where a given data item is mapped. We show that there exist trade-offs between these three criteria and the performance of different mapping strategies depends on the emphasis given on each of these criteria. More specifically, we describe an algorithm for mapping complete binary trees of height H onto M memory modules and prove that it achieves the following performance results: (1) conflict-free access to complete subtrees of size K and paths of size N such that N + K - [log K] /spl les/ M; (2) at most 1 conflict in accessing complete subtrees and paths of size M; (3) O(K/M + c) conflicts when accessing a composite template of K nodes consisting of c disjoint subsets, each subset being a complete subtree, or a path or a set of consecutive nodes in a level of the tree.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1045-9219
1558-2183
DOI:10.1109/71.995820