Habitat models and habitat connectivity analysis for butterflies and burnet moths – The example of Zygaena carniolica and Coenonympha arcania
In this paper, habitat models were used to predict potential habitat for endangered species, which is an important question in landscape and conservation planning. Based on logistic regression, we developed habitat distribution models for the burnet moth Zygaena carniolica and the nymphalid butterfl...
Saved in:
Published in | Biological conservation Vol. 126; no. 2; pp. 247 - 259 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.11.2005
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, habitat models were used to predict potential habitat for endangered species, which is an important question in landscape and conservation planning. Based on logistic regression, we developed habitat distribution models for the burnet moth
Zygaena carniolica and the nymphalid butterfly
Coenonympha arcania in Northern Bavaria, Germany. The relation between adult occurrence and habitat parameters, including the influence of landscape context, was analyzed on 118 sites. Habitat connectivity analyses were carried out on the basis of (1) habitat suitability maps generated from these models and (2) dispersal data from mark recapture studies. Our results showed that (1) the presence of the burnet depended mainly on the presence of nectar plants and of nutrient-poor dry grasslands in direct vicinity, that of the nymphalid on larger areas of extensively used dry grasslands within 100
m vicinity in combination with small patches of higher shrubs and bushes. (2) Internal as well as external validation indicated the robustness and general applicability of the models. Transferability in time and space indicated their high potential relevance for applications in nature conservation, such as predicting possible effects of land use changes. (3) Habitat connectivity analyses revealed a high degree of habitat connectivity within the study area. Thus, we could show no effects of isolation or habitat size for both species. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0006-3207 |
DOI: | 10.1016/j.biocon.2005.05.009 |