Fenton reaction-triggered colorimetric detection of phenols in water samples using unmodified gold nanoparticles

This work demonstrates a rapid and sensitive colorimetric detection of phenols by using single-stranded DNA (ssDNA)-regulated gold nanoparticles (AuNPs) as indicators. AuNPs can be stabilized in the presence of ssDNA through electrostatic repulsion, which prevents the salt-induced aggregation of AuN...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. B, Chemical Vol. 225; pp. 593 - 599
Main Authors Zhang, Li-pei, Xing, Yun-peng, Liu, Lan-hua, Zhou, Xiao-hong, Shi, Han-chang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 31.03.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This work demonstrates a rapid and sensitive colorimetric detection of phenols by using single-stranded DNA (ssDNA)-regulated gold nanoparticles (AuNPs) as indicators. AuNPs can be stabilized in the presence of ssDNA through electrostatic repulsion, which prevents the salt-induced aggregation of AuNPs in solution. However, hydroxyl radicals (OH) generated by the Fenton reaction can cleave the ssDNA on the nanoparticle surface into mono- or oligonucleotide fragments, disrupting AuNPs stability. Phenolic compounds are known to be capable of being degraded or oxidized by OH produced by Fenton reaction. Thus, phenols can effectively scavenge OH to avoid ssDNA cleavage, protecting AuNPs from salt-induced aggregation. The ability of phenols to scavenge OH provides a quantitative basis for phenol sensing. In this study, catechol and hydroquinone were selected as analytes and detected using the proposed ssDNA–AuNPs colorimetric probe. The detection sensitivities of the colorimetric sensor are 0.2–7.0μM for catechol and 2.7–19μM for hydroquinone. The proposed bioassay eliminates tedious sample pretreatment and offers favorable sensitivity and selectivity for targets in the presence of other investigated metal ions and organic molecules. The detection limits are 0.11μM for catechol and 1.6μM for hydroquinone, with relative standard deviations of 3.7% for catechol and 4.8% for hydroquinone. The recovery rate of catechol in real water samples ranges from 95% to 116%, confirming the application potential of the method to measure phenols in real samples.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0925-4005
1873-3077
DOI:10.1016/j.snb.2015.11.083