Assessment of lithium ion doping into low crystallized carbonaceous materials using molecular orbital calculations

Using molecular orbital calculation, the Li doping reaction in low crystallized carbonaceous material was investigated. As the Li doping reaction occurs on the surface of the graphite layer, the influence on the electric charge of the graphite layer was examined with graphitic models attached with f...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 43; no. 21; pp. 3127 - 3133
Main Authors Komoda, Satoru, Watanabe, Mikio, Komaba, Shinichi, Osaka, Tetsuya, Kikuyama, Susumu, Yuasa, Kohji
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.01.1998
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Using molecular orbital calculation, the Li doping reaction in low crystallized carbonaceous material was investigated. As the Li doping reaction occurs on the surface of the graphite layer, the influence on the electric charge of the graphite layer was examined with graphitic models attached with functional groups (-OH, -CHO). As a result, it is suggested that Li was doped at the different parts of the graphite layer after the typical intercalation reaction into the stacking structure. Furthermore, the structure doped with lithium became more stable when Li was doped on the negatively charged-carbon atom. It was concluded that the localization of charge densities of the structure of carbon conjugated-material effected strongly the Li induced adsorption at different parts of the graphite layer.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0013-4686
1873-3859
DOI:10.1016/S0013-4686(97)10192-X