Adaptive quasi-sliding-mode tracking control for discrete uncertain input-output systems

In this paper, a discrete robust adaptive quasi-sliding-mode tracking controller is presented for input-output systems with unknown parameters, unmodeled dynamics, and bounded disturbances. The robust tracking controller is comprised of adaptive control and a sliding-mode-based control design. The b...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 48; no. 1; pp. 216 - 224
Main Authors Xinkai Chen, Fukuda, T., Young, K.D.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2001
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, a discrete robust adaptive quasi-sliding-mode tracking controller is presented for input-output systems with unknown parameters, unmodeled dynamics, and bounded disturbances. The robust tracking controller is comprised of adaptive control and a sliding-mode-based control design. The bounded motion of the system around the sliding surface and the stability of the global system in the sense that all signals remain bounded are guaranteed. The adaptive algorithm, in which the deadzone method is employed even though the upper and lower bounds of the disturbances are unknown, is the extension of the authors' previous work for the state-space systems. An example and its simulation results are presented to illustrate the proposed approach.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0278-0046
1557-9948
DOI:10.1109/41.904582