Multifunctional microporous organic polymers
Functional microporous organic polymers (MOPs) are attractive in a wide range of applications including gas separation, catalysis, and energy storage. There is a lack of cost-effective processes to produce functional MOPs at industrial scale, which in fact limits their practical applications. Here,...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 2; no. 30; pp. 11930 - 11939 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
14.08.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Functional microporous organic polymers (MOPs) are attractive in a wide range of applications including gas separation, catalysis, and energy storage. There is a lack of cost-effective processes to produce functional MOPs at industrial scale, which in fact limits their practical applications. Here, we propose a new low-cost strategy, based on the Scholl reaction, which can directly link rigid building blocks to obtain MOPs with high surface area and highly microporous structures. More importantly, this method is suitable for various building blocks and can be used as a general bottom-up approach to produce a variety of multifunctional MOPs. Multifaceted applications of these materials are also demonstrated by their large gas storage capacity, high catalytic activity, luminescence and semiconducting properties. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2050-7488 2050-7496 2050-7496 |
DOI: | 10.1039/C4TA01081G |