Low-Dimensional ReS2/C Composite as Effective Hydrodesulfurization Catalyst
Single-layer, ultrasmall ReS2 nanoplates embedded in amorphous carbon were synthesized from a hydrothermal treatment involving ammonium perrhenate, thiourea, tetraoctylammonium bromide, and further annealing. The rhenium disulfide, obtained as a low dimensional carbon composite (ReS2/C), was tested...
Saved in:
Published in | Catalysts Vol. 7; no. 12; p. 377 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Single-layer, ultrasmall ReS2 nanoplates embedded in amorphous carbon were synthesized from a hydrothermal treatment involving ammonium perrhenate, thiourea, tetraoctylammonium bromide, and further annealing. The rhenium disulfide, obtained as a low dimensional carbon composite (ReS2/C), was tested in the hydrodesulfurization of light hydrocarbons, using 3-methylthiophene as the model molecule, and showed enhanced catalytic activity in comparison with a sulfide CoMo/γ-Al2O3 catalyst. The ReS2/C composite was characterized by X-ray diffraction (XRD), Raman spectroscopy, N2 adsorption-desorption isotherms, scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The improved catalytic performance of this ReS2/C composite may be ascribed to the presence of a non-stoichiometric sulfur species (ReS2−x), the absence of stacking along the c-axis, and the ultra-small basal planes, which offer a higher proportion of structural sulfur defects at the edge of the layers, known as a critical parameter for hydrodesulfurization catalytic processes. |
---|---|
ISSN: | 2073-4344 2073-4344 |
DOI: | 10.3390/catal7120377 |