Evidence that hydrogen peroxide generated by 365-nm UVA radiation is not important in mammalian cell killing

We compared measurements of cell survival and DNA single-strand breaks (SSBs) caused by hydrogen peroxide (H2O2) and UVA radiation (365-nm) in both a parental and a H2O2-resistant variant of the Chinese hamster ovary HA1 line derived by culturing cells in progressively higher concentrations of H2O2....

Full description

Saved in:
Bibliographic Details
Published inRadiation research Vol. 123; no. 2; p. 220
Main Authors Peak, M J, Jones, C A, Sedita, B A, Dudek, E J, Spitz, D R, Peak, J G
Format Journal Article
LanguageEnglish
Published United States 01.08.1990
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:We compared measurements of cell survival and DNA single-strand breaks (SSBs) caused by hydrogen peroxide (H2O2) and UVA radiation (365-nm) in both a parental and a H2O2-resistant variant of the Chinese hamster ovary HA1 line derived by culturing cells in progressively higher concentrations of H2O2. Both RNA slot blot analysis and enzyme analysis confirmed that the variant possesses high levels of both catalase activity and mRNA. The variant was completely resistant to the lethal effects of H2O2 over the concentration range tested (up to 480 microM), whereas the parental strain showed less than 1% survival at this concentration. Similarly, the H2O2-resistant strain exhibited far fewer SSBs after exposure to H2O2 than the parental strain. Addition of o-phenanthroline to the parental cells during H2O2 exposure almost completely inhibited SSB induction, evidence that these SSBs are produced via the Fenton pathway of Haber-Weiss reactions. Very little difference was found between the variant and the parent after exposure to 365-nm radiation: only a minor difference in survival kinetics and no difference is SSB induction were observed between the two cell lines. These results are consistent with a hypothesis that most lethal events caused in cells by UVA occur by pathways that do not involve the H2O2 that is produced by sensitized reactions within the cells.
ISSN:0033-7587
DOI:10.2307/3577548