Metal–insulator transition in Honeycomb lattice due to electronic correlation

The role of electronic correlation in metallicity and insulating behavior of Honeycomb (HC) lattice is investigated via the Hubbard model. It is shown that the HC lattice suffers an evolution from an ionic band insulator to a metal on increasing the electronic interaction, U. There is no critical va...

Full description

Saved in:
Bibliographic Details
Published inPhysica. B, Condensed matter Vol. 430; pp. 36 - 39
Main Authors Fathi, M.B., Tehranchi, M.M.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 01.12.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The role of electronic correlation in metallicity and insulating behavior of Honeycomb (HC) lattice is investigated via the Hubbard model. It is shown that the HC lattice suffers an evolution from an ionic band insulator to a metal on increasing the electronic interaction, U. There is no critical value Uc1 for onset of metallic state and each of two common van Hove singularities splits into two extra singularities. The metallic state is enhanced with further increasing the interaction strength U, and the characteristic Kondo peak develops. The height of Kondo peak completely vanishes at U≃6.15t, and then a Mott insulator develops at Uc2≃6.5t.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0921-4526
1873-2135
DOI:10.1016/j.physb.2013.08.023