Effects of starvation on lipid accumulation and antioxidant response in the right and left lobes of liver in large yellow croaker Pseudosciaena crocea
The present study aimed to determine the effects of starvation on lipid content and antioxidant responses in the right and left lobes of liver in large yellow croaker. Fish were divided into three groups: the control fish fed normally and the fish starved for 4 and 12days. The set of biomarkers were...
Saved in:
Published in | Ecological indicators Vol. 66; pp. 269 - 274 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The present study aimed to determine the effects of starvation on lipid content and antioxidant responses in the right and left lobes of liver in large yellow croaker. Fish were divided into three groups: the control fish fed normally and the fish starved for 4 and 12days. The set of biomarkers were determined, including crude lipid and MDA contents, and mRNA levels and activities of copper and zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR). Starvation for 12days decreased lipid content and increased MDA content and mRNA levels and activities of antioxidant enzyme genes tested in both lobes of liver. No significant difference in these biomarkers between both lobes of liver was observed in fish starved for 12days. However, there were significant differences between both lobes of liver in lipid and MDA contents, activities of CAT and GR, and expression levels of Cu/Zn-SOD and GR in fish starved for 4days. These observed differences between starved and fed fish and between both lobes of liver could be important biomarkers that contributed in separating starved from fed fish and short-term starved from long-term starved fish, respectively. Our study emphasized the same lobe of the liver should be sampled when evaluating biomarkers during starvation in fish. |
---|---|
Bibliography: | http://dx.doi.org/10.1016/j.ecolind.2016.01.037 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1470-160X 1872-7034 |
DOI: | 10.1016/j.ecolind.2016.01.037 |