Comprehensive analysis of non-synonymous missense SNPs of human galactose mutarotase (GALM) gene: an integrated computational approach

Missense Non-synonymous single nucleotide polymorphisms (nsSNPs) of Galactose Mutarotase (GALM) are associated with the Novel type of Galactosemia (Galactosemia type 4) together with symptoms such as high blood galactose levels and eye cataracts. The objective of the present study was to identify de...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomolecular structure & dynamics Vol. ahead-of-print; no. ahead-of-print; pp. 1 - 15
Main Authors Murthy, T. P. Krishna, Shukla, Rohit, Durga Prasad, N., Swetha, Praveen, Shreyas, S., Singh, Tiratha Raj, Pattabiraman, Ramya, Nair, Shishira S., Mathew, Blessy B., Kumar, K. M.
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 21.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Missense Non-synonymous single nucleotide polymorphisms (nsSNPs) of Galactose Mutarotase (GALM) are associated with the Novel type of Galactosemia (Galactosemia type 4) together with symptoms such as high blood galactose levels and eye cataracts. The objective of the present study was to identify deleterious nsSNPs of GALM recorded on the dbSNP database through comprehensive insilico analysis. Among the 319 missense nsSNPs reported, various insilco tools predicted R78S, R82G, A163E, P210S, Y281C, E307G and F339C as the most deleterious mutations. Structural analysis, PTM analysis and molecular dynamics simulations (MDS) were carried out to understand the effect of these mutations on the structural and physicochemical properties of the GALM protein. The residues R82G and E307G were found to be part of the binding site that resulted in decreased surface accessibility. Replacing the charged wild-type residue with a neutral mutant type affected its substrate binding. All 7 mutations were found to increase the rigidity of the protein structure, which is unfavorable during ligand binding. The mutation F339E made the protein structure more rigid than all the other mutations. Y281 is a phosphorylated site, and therefore, less significant structural changes were observed when compared to other mutations; however, it may have significant differences in the usual functioning of the protein. In summary, the structural and functional analysis of missense SNPs of GALM is important to reduce the number of potential mutations to be evaluated in vitro to understand the association with some genetic diseases. Communicated by Ramaswamy H. Sarma
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0739-1102
1538-0254
DOI:10.1080/07391102.2022.2160813