Optimization and Evaluation of Variability in the Programming Window of a Flash Cell With Molecular Metal-Oxide Storage

We report a modeling study of a conceptual nonvolatile memory cell based on inorganic molecular metal-oxide clusters as a storage media embedded in the gate dielectric of a MOSFET. For the purpose of this paper, we developed a multiscale simulation framework that enables the evaluation of variabilit...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 61; no. 6; pp. 2019 - 2026
Main Authors Georgiev, Vihar P., Markov, Stanislav, Vila-Nadal, Laia, Busche, Christoph, Cronin, Leroy, Asenov, Asen
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We report a modeling study of a conceptual nonvolatile memory cell based on inorganic molecular metal-oxide clusters as a storage media embedded in the gate dielectric of a MOSFET. For the purpose of this paper, we developed a multiscale simulation framework that enables the evaluation of variability in the programming window of a flash cell with sub-20-nm gate length. Furthermore, we studied the threshold voltage variability due to random dopant fluctuations and fluctuations in the distribution of the molecular clusters in the cell. The simulation framework and the general conclusions of our work are transferrable to flash cells based on alternative molecules used for a storage media.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2014.2315520