Lipomannans, but not lipoarabinomannans, purified from Mycobacterium chelonae and Mycobacterium kansasii induce TNF-alpha and IL-8 secretion by a CD14-toll-like receptor 2-dependent mechanism
Lipoarabinomannans (LAMs) are glycolipids from the mycobacterial cell wall that exhibit various biological activities, including proinflammatory and anti-inflammatory responses. However, little is known about the properties of lipomannans (LMs), considered to be precursors of LAMs. In this study, we...
Saved in:
Published in | The Journal of immunology (1950) Vol. 171; no. 4; pp. 2014 - 2023 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Publisher : Baltimore : Williams & Wilkins, c1950-. Latest Publisher : Bethesda, MD : American Association of Immunologists
15.08.2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Lipoarabinomannans (LAMs) are glycolipids from the mycobacterial cell wall that exhibit various biological activities, including proinflammatory and anti-inflammatory responses. However, little is known about the properties of lipomannans (LMs), considered to be precursors of LAMs. In this study, we provide evidence that LMs purified from Mycobacterium chelonae and a clinical strain of Mycobacterium kansasii stimulated mRNA expression and secretion of TNF-alpha and IL-8 from human macrophage-like differentiated THP-1 cells. In contrast to LMs, LAMs were not able to induce a significant cytokine-inducing effect. The mechanism of activation by LMs was investigated using various Abs raised against surface receptors for multiple bacterial products. The presence of anti-CD14 or anti-Toll-like receptor 2 (TLR2) Abs profoundly affected production of TNF-alpha and IL-8, suggesting that both CD14 and TLR2 participate in the LM-mediated activation process. Furthermore, stimulation of cells was dependent on the presence of the LPS-binding protein, a plasma protein that transfers glycolipids to CD14. Chemical degradation of the arabinan domain of mannose-capped LAM from M. kansasii, which presented no cytokine-eliciting effect, restored the cytokine-inducing activity at a level similar to those of LMs. These results support the hypothesis that the presence of an arabinan in LAMs prevents the interaction of these glycolipids with TLR2/CD14 receptors. In addition, we found that phosphatidylinositol dimannosides isolated from M. kansasii did not induce cytokine secretion. This study suggests that LMs isolated from different mycobacterial species participate in the immunomodulation of the infected host and that the D-mannan core of this glycolipid is essential for this function. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.171.4.2014 |