Reliability estimation of s -out-of- k system with Kumaraswamy distribution based on partially constant stress accelerated life tests

In reliability theory, the reliability inference for s-out-of-k systems holds significant importance. In this paper, we explore the estimation of reliability for s-out-of-k systems based on partially constant stress accelerated life tests. Assume that the latent failure times of the components follo...

Full description

Saved in:
Bibliographic Details
Published inStatistical theory and related fields Vol. 8; no. 4; pp. 295 - 314
Main Authors Lamu, Dongzhu, Yan, Rongfang
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In reliability theory, the reliability inference for s-out-of-k systems holds significant importance. In this paper, we explore the estimation of reliability for s-out-of-k systems based on partially constant stress accelerated life tests. Assume that the latent failure times of the components follow the Kumaraswamy distribution. Maximum likelihood estimates for the unknown parameters are established, and their uniqueness is demonstrated. In addition, confidence intervals for the unknown parameters are constructed using the covariance matrix. Confidence intervals for the reliability functions are determined by the Delta method, while Bootstrap intervals are provided for comparison purposes. Subsequently, Bayesian point and interval estimates based on MCMC techniques considering different loss functions are discussed. Lastly, we conduct an extensive simulation study and analyse one real data set, which reveals that the Bayesian approach yields the best results.
ISSN:2475-4269
2475-4277
DOI:10.1080/24754269.2024.2359826