Engineering a GPCR-based yeast biosensor for a highly sensitive melatonin detection from fermented beverages

Melatonin is a multifunctional molecule with diverse biological roles that holds great value as a health-promoting bioactive molecule in any food product and yeast’s ability to produce it has been extensively demonstrated in the last decade. However, its quantification presents costly analytical cha...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 17852 - 12
Main Authors Bisquert, Ricardo, Guillén, Alba, Muñiz-Calvo, Sara, Guillamón, José M.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.08.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Melatonin is a multifunctional molecule with diverse biological roles that holds great value as a health-promoting bioactive molecule in any food product and yeast’s ability to produce it has been extensively demonstrated in the last decade. However, its quantification presents costly analytical challenges due to the usual low concentrations found as the result of yeast metabolism. This study addresses these analytical challenges by optimizing a yeast biosensor based on G protein-coupled receptors (GPCR) for melatonin detection and quantitation. Strategic genetic modifications were employed to significantly enhance its sensitivity and fluorescent signal output, making it suitable for detection of yeast-produced melatonin. The optimized biosensor demonstrated significantly improved sensitivity and fluorescence, enabling the screening of 101 yeast strains and the detection of melatonin in various wine samples. This biosensor’s efficacy in quantifying melatonin in yeast growth media underscores its utility in exploring melatonin production dynamics and potential applications in functional food development. This study provides a new analytical approach that allows a rapid and cost-effective melatonin analysis to reach deeper insights into the bioactivity of melatonin in fermented products and its implications for human health. These findings highlight the broader potential of biosensor technology in streamlining analytical processes in fermentation science.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-68633-y