Proteolytic system of Bacillus sp. CL18 is capable of extensive feather degradation and hydrolysis of diverse protein substrates

1. Feathers are recalcitrant protein-rich wastes produced in huge amounts by poultry processing for meat production. Hence, feather bioconversion and protease production by Bacillus sp. CL18 were investigated. 2. Bacillus sp. CL18 demonstrated a remarkable feather-degrading potential. Through cultiv...

Full description

Saved in:
Bibliographic Details
Published inBritish poultry science Vol. 58; no. 3; pp. 329 - 335
Main Authors Rieger, T. J., de Oliveira, C. T., Pereira, J. Q., Brandelli, A., Daroit, D. J.
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 04.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:1. Feathers are recalcitrant protein-rich wastes produced in huge amounts by poultry processing for meat production. Hence, feather bioconversion and protease production by Bacillus sp. CL18 were investigated. 2. Bacillus sp. CL18 demonstrated a remarkable feather-degrading potential. Through cultivations on feather broth (10 g l −1 feathers), 94.5% ± 3% of whole feathers were degraded after 4 d. Increases in soluble protein contents were observed and protease production was maximal also at d 4. This strain produced diverse proteolytic enzymes during growth. 3. Crude protease displayed optimal activity at 55°C (50-62°C), pH 8.0 (7.0-9.0) and a low thermal stability. Proteolytic activity increased in the presence of Ca 2+ , Mg 2+ , Triton X-100, Tween 20 and dimethyl sulphoxide. Inhibition profile indicated that crude protease contains, mainly, serine proteases. Enzyme preparation hydrolysed mainly casein and soy protein isolate. 4. The keratinolytic capacity of Bacillus sp. CL18 at moderate temperatures (30°C) might be appropriate for feather conversion, resulting in protein hydrolysates and proteolytic enzymes. Proteases are postulated to be added-value products that can be obtained from such a bioprocess.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0007-1668
1466-1799
DOI:10.1080/00071668.2017.1293229