Time-evolution of ScCO2-weakened coal integrity: Chemo-hydromechanical coupling and geological sequestration implications

Geological sequestration of CO2 is critical for deep decarbonization, but the geomechanical stability of coal reservoirs remains a major challenge. This study integrates nanoindentation, XRD/SEM-EDS chemo physical characterization and 4D CT visualization to investigate the time-evolving mechanical d...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of mining science and technology Vol. 35; no. 6; pp. 961 - 973
Main Authors Liu, Peng, Yang, Jingtao, Nie, Baisheng, Liu, Ang, Zhao, Wei, Xu, Hao, He, Hengyi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Geological sequestration of CO2 is critical for deep decarbonization, but the geomechanical stability of coal reservoirs remains a major challenge. This study integrates nanoindentation, XRD/SEM-EDS chemo physical characterization and 4D CT visualization to investigate the time-evolving mechanical degradation of bituminous coals with ScCO2 injection. The main results show that 4 d of ScCO2 treatment caused 50.47%–80.99% increase in load–displacement deformation and 26.92%–76.17% increase in creep depth at peak load, accompanied by 55.01%–63.38% loss in elastic modulus and 52.83%–74.81% reduction in hardness. The degradation exhibited biphasic kinetics, characterized by rapid surface-driven weakening (0–2 d), followed by stabilized matrix-scale pore homogenization (2–4 d). ScCO2 preferentially dissolved carbonate minerals (dolomite), driving pore network expansion and interfacial debonding, while silicate minerals resisted dissolution but promoted structural homogenization. These coupled geochemical-mechanical processes reduced the mechanical heterogeneity of the coal and altered its failure modes. The results establish a predictive framework for reservoir stability assessment and provide actionable insights for optimizing CO2 enhanced coalbed methane recovery.
ISSN:2095-2686
DOI:10.1016/j.ijmst.2025.05.006