Ligularia fischeri extract attenuates liver damage induced by chronic alcohol intake

Context Ligularia fischeri (Ledebour) Turcz. (Compositae) has been used as a leafy vegetable and in traditional medicine to treat hepatic disorder in East Asia. Objective The present study explores the antioxidant activity of LF aqueous extract on EtOH-induced oxidative stress accompanied by hepatot...

Full description

Saved in:
Bibliographic Details
Published inPharmaceutical biology Vol. 54; no. 8; pp. 1465 - 1473
Main Authors Kim, Dongyeop, Kim, Gyeong-Woo, Lee, Seon-Ho, Han, Gi Dong
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 02.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Context Ligularia fischeri (Ledebour) Turcz. (Compositae) has been used as a leafy vegetable and in traditional medicine to treat hepatic disorder in East Asia. Objective The present study explores the antioxidant activity of LF aqueous extract on EtOH-induced oxidative stress accompanied by hepatotoxicity both in vitro and in vivo. Materials and methods In vitro study using the mouse liver NCTC-1469 cell line was conducted to estimate the cytotoxicity as well as the inhibitory effect of LF extract against alcohol-treated cell damage. In vivo study used an alcohol-fed Wister rat model orally administered EtOH (3.95 g/kg of body weight/d) with or without LF extract (100 or 200 mg/kg body weight) for 6 weeks. Serum and liver tissue were collected to evaluate hepatic injury and antioxidant-related enzyme activity. Results The EC 50 value for the DPPH radical scavenging capacity of LF extract was 451.5 μg/mL, whereas the IC 50 value of LF extract in terms of EtOH-induced reactive oxygen species (ROS) generation was 98.3 μg/mL without cell cytotoxicity. LF extract (200 mg/kg body weight) significantly reduced the triglyceride content of serum (33%) as well as hepatic lipid peroxidation (36%), whereas SOD activity was elevated three-fold. LF extract suppressed expression of CYP2E1 and TNF-α, and attenuated alcohol-induced abnormal morphological changes. Discussion and conclusion LF extract attenuated liver damage induced by alcoholic oxidative stress through inhibition of ROS generation, down-regulation of CYP2E1, and activation of hepatic antioxidative enzymes. Homeostasis of the antioxidative defence system in the liver by LF extract mitigated hepatic disorder following chronic alcohol intake.
ISSN:1388-0209
1744-5116
DOI:10.3109/13880209.2015.1104701