Nitrogen vacancy induced in situ g-C3N4 p-n homojunction for boosting visible light-driven hydrogen evolution
[Display omitted] Graphitic carbon nitride (g-C3N4) as a novel photocatalyst with great potentials has been extensively employed in solar-driven energy conversion. Herein, the novel in situ g-C3N4 p-n homojunction photocatalyst with nitrogen vacancies (NV-g-C3N4) is successfully fabricated via hydro...
Saved in:
Published in | Journal of colloid and interface science Vol. 587; pp. 110 - 120 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | [Display omitted]
Graphitic carbon nitride (g-C3N4) as a novel photocatalyst with great potentials has been extensively employed in solar-driven energy conversion. Herein, the novel in situ g-C3N4 p-n homojunction photocatalyst with nitrogen vacancies (NV-g-C3N4) is successfully fabricated via hydrothermal synthesis followed by two-step calcination. The in situ NV-g-C3N4 homojunction can be employed as an effective photocatalyst for hydrogen generation through water splitting under visible light, and the optimum rate constant of 3259.1 μmol.g−1.h−1 is achieved, which is 8.7 times as high as that of pristine g-C3N4. Moreover, the markedly increased photocatalytic performance is ascribed to the enhanced light utilization, large specific surface area and unique nitrogen-vacated p-n homojunction structure, which provides more active sites and improves the separation of photo-excited electron-hole pairs. Besides, the underlying mechanism for efficient charge transportation and separation is also proposed. This work demonstrates that the remodeling of g-C3N4 p-n homojunction with nitrogen vacancies is a feasible way as highly efficient photocatalysts and might inspire some new strategies for energy and environmental applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9797 1095-7103 1095-7103 |
DOI: | 10.1016/j.jcis.2020.12.009 |