Bevacizumab combined with apatinib enhances antitumor and anti-angiogenesis effects in a lung cancer model in vitro and in vivo
Angiogenesis is involved in the proliferation and metastasis of solid tumours; hence, it is an attractive therapeutic target. However, most patients who undergo anti-angiogenic drug treatment do not achieve complete tumour regression, resulting in drug resistance. The objective of this research is t...
Saved in:
Published in | Journal of drug targeting Vol. 28; no. 9; pp. 961 - 969 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
20.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Angiogenesis is involved in the proliferation and metastasis of solid tumours; hence, it is an attractive therapeutic target. However, most patients who undergo anti-angiogenic drug treatment do not achieve complete tumour regression, resulting in drug resistance. The objective of this research is to explore the therapeutic effect of combining bevacizumab (Bev), an anti-vascular endothelial growth factor (VEGF)-A antibody, with apatinib (Apa), a VEGR receptor (VEGFR)-2-targeting tyrosine kinase inhibitor, in non-small cell lung cancer (NSCLC). In vitro, we assessed the influence which Bev + Apa treatment exerts upon the proliferation as well as apoptosis of Lewis lung carcinoma (LLC) cells in virtue of the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide as assay as well as Annexin V staining, respectively. For in vivo assessment, we established a tumour-bearing mouse model with LLC cells and investigated the anti-angiogenic and antitumor effects of Bev + Apa by
18
F-FDG PET/CT imaging, immunohistochemistry and TUNEL staining. Bev + Apa treatment significantly inhibited LLC cell growth and proliferation in a larger scale compared to therapy of either of the only agent. Bev + Apa inhibited tumour growth and extended the median survival time of tumour-bearing mice. Mechanistically, Bev + Apa reduced angiogenesis by inhibiting VEGF and VEGFR-2 expression and reducing glucose metabolism in tumour tissues. Thus, Bev and Apa inhibited tumour angiogenesis synergistically, indicating their potential clinical utility for NSCLC treatment. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1061-186X 1029-2330 |
DOI: | 10.1080/1061186X.2020.1764963 |