A Systematization of the Unscented Kalman Filter Theory

In this paper, we propose a systematization of the (discrete-time) Unscented Kalman Filter (UKF) theory. We gather all available UKF variants in the literature, present corrections to theoretical inconsistencies, and provide a tool for the construction of new UKF's in a consistent way. This sys...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 60; no. 10; pp. 2583 - 2598
Main Authors Menegaz, Henrique M. T., Ishihara, Joao Y., Borges, Geovany A., Vargas, Alessandro N.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we propose a systematization of the (discrete-time) Unscented Kalman Filter (UKF) theory. We gather all available UKF variants in the literature, present corrections to theoretical inconsistencies, and provide a tool for the construction of new UKF's in a consistent way. This systematization is done, mainly, by revisiting the concepts of Sigma-Representation, Unscented Transformation (UT), Scaled Unscented Transformation (SUT), UKF, and Square-Root Unscented Kalman Filter (SRUKF). Inconsistencies are related to 1) matching the order of the transformed covariance and cross-covariance matrices of both the UT and the SUT; 2) multiple UKF definitions; 3) issue with some reduced sets of sigma points described in the literature; 4) the conservativeness of the SUT; 5) the scaling effect of the SUT on both its transformed covariance and cross-covariance matrices; and 6) possibly ill-conditioned results in SRUKF's. With the proposed systematization, the symmetric sets of sigma points in the literature are formally justified, and we are able to provide new consistent variations for UKF's, such as the Scaled SRUKF's and the UKF's composed by the minimum number of sigma points. Furthermore, our proposed SRUKF has improved computational properties when compared to state-of-the-art methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2015.2404511