Effects of an intense, high-frequency laser field on the binding energy of excitons confined in a GaInNAs/GaAs quantum well

The effects of an intense, high-frequency laser field linearly polarized along the growth direction on the binding energy of excitons confined in a GaInNAs/GaAs quantum well is computed for different nitrogen and indium mole fractions by means of a variational technique within the effective-mass app...

Full description

Saved in:
Bibliographic Details
Published inPhysica. B, Condensed matter Vol. 407; no. 3; pp. 528 - 532
Main Authors Yesilgul, U., Ungan, F., Kasapoglu, E., Sarı, H., Sökmen, I.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 01.02.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The effects of an intense, high-frequency laser field linearly polarized along the growth direction on the binding energy of excitons confined in a GaInNAs/GaAs quantum well is computed for different nitrogen and indium mole fractions by means of a variational technique within the effective-mass approximation. Our results show that such laser field creates an additional geometric confinement on the electronic and exciton states in the quantum well and the exciton binding energy depends on both the nitrogen and indium concentrations.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0921-4526
1873-2135
DOI:10.1016/j.physb.2011.11.030