Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance
[Display omitted] Photocatalytic reduction of carbon dioxide (CO2) under visible light irradiation for producing high-value fuel has attracted tremendous attention in recent years. In this study, titanium carbide MXene (Ti3C2) was used as a noble metal-free co-catalyst by simply mixing graphitic car...
Saved in:
Published in | Journal of colloid and interface science Vol. 564; pp. 406 - 417 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
22.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Photocatalytic reduction of carbon dioxide (CO2) under visible light irradiation for producing high-value fuel has attracted tremendous attention in recent years. In this study, titanium carbide MXene (Ti3C2) was used as a noble metal-free co-catalyst by simply mixing graphitic carbon nitride (g-C3N4) and alkalized Ti3C2. The carbon monoxide evolution rate of the optimized composite (5%TCOH-CN) from photocatalytic reduction of CO2 was 5.9 times higher than that of pure g-C3N4. Alkalized Ti3C2 was responsible for the superior photocatalytic activity due to its excellent electrical conductivity and large CO2 adsorption capacity. Furthermore, the separation of the photo-induced electron–hole pairs was greatly enhanced because of the large Fermi level difference between alkalized Ti3C2 and pure g-C3N4. This work demonstrates the potential of MXenes as noble metal-free co-catalyst for photocatalysis processes such as carbon dioxide reduction reaction and nitrogen reduction reaction. |
---|---|
AbstractList | [Display omitted]
Photocatalytic reduction of carbon dioxide (CO2) under visible light irradiation for producing high-value fuel has attracted tremendous attention in recent years. In this study, titanium carbide MXene (Ti3C2) was used as a noble metal-free co-catalyst by simply mixing graphitic carbon nitride (g-C3N4) and alkalized Ti3C2. The carbon monoxide evolution rate of the optimized composite (5%TCOH-CN) from photocatalytic reduction of CO2 was 5.9 times higher than that of pure g-C3N4. Alkalized Ti3C2 was responsible for the superior photocatalytic activity due to its excellent electrical conductivity and large CO2 adsorption capacity. Furthermore, the separation of the photo-induced electron–hole pairs was greatly enhanced because of the large Fermi level difference between alkalized Ti3C2 and pure g-C3N4. This work demonstrates the potential of MXenes as noble metal-free co-catalyst for photocatalysis processes such as carbon dioxide reduction reaction and nitrogen reduction reaction. Photocatalytic reduction of carbon dioxide (CO₂) under visible light irradiation for producing high-value fuel has attracted tremendous attention in recent years. In this study, titanium carbide MXene (Ti₃C₂) was used as a noble metal-free co-catalyst by simply mixing graphitic carbon nitride (g-C₃N₄) and alkalized Ti₃C₂. The carbon monoxide evolution rate of the optimized composite (5%TCOH-CN) from photocatalytic reduction of CO₂ was 5.9 times higher than that of pure g-C₃N₄. Alkalized Ti₃C₂ was responsible for the superior photocatalytic activity due to its excellent electrical conductivity and large CO₂ adsorption capacity. Furthermore, the separation of the photo-induced electron–hole pairs was greatly enhanced because of the large Fermi level difference between alkalized Ti₃C₂ and pure g-C₃N₄. This work demonstrates the potential of MXenes as noble metal-free co-catalyst for photocatalysis processes such as carbon dioxide reduction reaction and nitrogen reduction reaction. Photocatalytic reduction of carbon dioxide (CO2) under visible light irradiation for producing high-value fuel has attracted tremendous attention in recent years. In this study, titanium carbide MXene (Ti3C2) was used as a noble metal-free co-catalyst by simply mixing graphitic carbon nitride (g-C3N4) and alkalized Ti3C2. The carbon monoxide evolution rate of the optimized composite (5%TCOH-CN) from photocatalytic reduction of CO2 was 5.9 times higher than that of pure g-C3N4. Alkalized Ti3C2 was responsible for the superior photocatalytic activity due to its excellent electrical conductivity and large CO2 adsorption capacity. Furthermore, the separation of the photo-induced electron-hole pairs was greatly enhanced because of the large Fermi level difference between alkalized Ti3C2 and pure g-C3N4. This work demonstrates the potential of MXenes as noble metal-free co-catalyst for photocatalysis processes such as carbon dioxide reduction reaction and nitrogen reduction reaction.Photocatalytic reduction of carbon dioxide (CO2) under visible light irradiation for producing high-value fuel has attracted tremendous attention in recent years. In this study, titanium carbide MXene (Ti3C2) was used as a noble metal-free co-catalyst by simply mixing graphitic carbon nitride (g-C3N4) and alkalized Ti3C2. The carbon monoxide evolution rate of the optimized composite (5%TCOH-CN) from photocatalytic reduction of CO2 was 5.9 times higher than that of pure g-C3N4. Alkalized Ti3C2 was responsible for the superior photocatalytic activity due to its excellent electrical conductivity and large CO2 adsorption capacity. Furthermore, the separation of the photo-induced electron-hole pairs was greatly enhanced because of the large Fermi level difference between alkalized Ti3C2 and pure g-C3N4. This work demonstrates the potential of MXenes as noble metal-free co-catalyst for photocatalysis processes such as carbon dioxide reduction reaction and nitrogen reduction reaction. |
Author | Tang, Qijun Wang, Haiqiang Wu, Zhongbiao Sun, Zhuxing Deng, Shuang |
Author_xml | – sequence: 1 givenname: Qijun surname: Tang fullname: Tang, Qijun organization: Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University, Hangzhou 310058, PR China – sequence: 2 givenname: Zhuxing surname: Sun fullname: Sun, Zhuxing organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China – sequence: 3 givenname: Shuang surname: Deng fullname: Deng, Shuang organization: Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China – sequence: 4 givenname: Haiqiang surname: Wang fullname: Wang, Haiqiang email: haiqiangwang@zju.edu.cn organization: Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University, Hangzhou 310058, PR China – sequence: 5 givenname: Zhongbiao surname: Wu fullname: Wu, Zhongbiao organization: Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University, Hangzhou 310058, PR China |
BookMark | eNqFkT1PHDEQhq2ISBwkf4DKZZpdPPbae5bSoIV8SAQakOgsx54FX_bWh-0jgl-PT0eVglRTzPOMZuY9IgdznJGQE2AtMFCnq3blQm45A90Cb5mGD2QBTMumByYOyIIxDo3udX9IjnJeMQYgpV4Qf44uJlvCfE_vm0FcdfRvKA_UTn_sFObwgp7eBDFw-usOZ6RjTHST4jqW2tg8xBKdLXZ6LsHR4ZrThH7rSogz3WCq8NrODj-Rj6OdMn5-q8fk9tvFzfCjubz-_nM4u2ycUKo0SymF8mpk1jJuOxh7bevK0OvxN_cWuBTeagFeohw5OFDK9dp1S8a9csqLY_JlP7du-LjFXMw6ZIfTZGeM22x4x5isU4T6P1oh3kkJXUWXe9SlmHPC0bhQ7O7GkmyYDDCzy8CszC4Ds8vAADc1g6ryf9RNCmubnt-Xvu4lrK96CphMdgHrG31I6IrxMbynvwLhAKF0 |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2022_165933 crossref_primary_10_1002_adma_202301850 crossref_primary_10_1007_s10098_024_03093_6 crossref_primary_10_3866_PKU_WHXB202407002 crossref_primary_10_1016_j_colsurfa_2022_129315 crossref_primary_10_1016_j_jmst_2021_10_029 crossref_primary_10_1016_j_pmatsci_2024_101386 crossref_primary_10_1039_D2RA08324H crossref_primary_10_1002_adfm_202311609 crossref_primary_10_1016_j_memsci_2024_122524 crossref_primary_10_1016_j_materresbull_2023_112536 crossref_primary_10_1016_j_nanoms_2023_02_003 crossref_primary_10_1016_j_matre_2022_100081 crossref_primary_10_1002_solr_202300691 crossref_primary_10_1016_j_colsurfa_2024_134101 crossref_primary_10_1016_j_flatc_2021_100252 crossref_primary_10_1016_j_jcis_2020_10_065 crossref_primary_10_1016_j_jcis_2021_12_196 crossref_primary_10_1016_j_jcis_2022_04_003 crossref_primary_10_1002_smm2_1238 crossref_primary_10_1002_admi_202200771 crossref_primary_10_1016_j_jallcom_2021_160757 crossref_primary_10_1021_acsnano_2c04750 crossref_primary_10_1016_j_nanoen_2021_106532 crossref_primary_10_1016_j_apcatb_2024_125017 crossref_primary_10_2139_ssrn_4054572 crossref_primary_10_1007_s42114_024_01026_x crossref_primary_10_1016_j_carbon_2024_119537 crossref_primary_10_1016_j_jcou_2021_101814 crossref_primary_10_1007_s11356_023_26003_7 crossref_primary_10_1021_acsanm_2c04067 crossref_primary_10_1016_j_colsurfa_2022_128358 crossref_primary_10_1016_j_jcou_2021_101817 crossref_primary_10_1016_j_jece_2025_115694 crossref_primary_10_1016_j_ccr_2022_214965 crossref_primary_10_1039_D1EE03211A crossref_primary_10_1016_S1872_5805_23_60722_X crossref_primary_10_1016_j_jhazmat_2023_132531 crossref_primary_10_1039_D3NR00242J crossref_primary_10_1016_j_jcis_2022_01_130 crossref_primary_10_1016_j_matpr_2022_06_445 crossref_primary_10_1016_j_jcis_2021_02_105 crossref_primary_10_1039_D2TA01140A crossref_primary_10_1002_ente_202400136 crossref_primary_10_1016_j_jallcom_2022_166908 crossref_primary_10_1016_j_seppur_2023_124528 crossref_primary_10_1021_acs_energyfuels_3c01301 crossref_primary_10_1021_acssuschemeng_1c01155 crossref_primary_10_1016_j_chemosphere_2021_132923 crossref_primary_10_1016_j_jcou_2021_101806 crossref_primary_10_1016_j_cej_2021_130340 crossref_primary_10_1021_acsami_0c18391 crossref_primary_10_1016_j_cej_2022_137028 crossref_primary_10_1016_j_jhazmat_2022_130165 crossref_primary_10_1002_admi_202202172 crossref_primary_10_1016_j_apcatb_2021_120546 crossref_primary_10_1016_j_ceja_2024_100593 crossref_primary_10_1016_j_jcis_2022_05_064 crossref_primary_10_1039_D2CY00085G crossref_primary_10_1016_j_mssp_2022_106569 crossref_primary_10_1016_j_jcis_2020_08_047 crossref_primary_10_1039_D0TC02979C crossref_primary_10_1007_s12209_022_00328_9 crossref_primary_10_1016_j_jece_2021_106642 crossref_primary_10_1080_03067319_2023_2223127 crossref_primary_10_1016_j_ijhydene_2021_01_096 crossref_primary_10_1039_D1CY01096D crossref_primary_10_1016_j_ccr_2023_215094 crossref_primary_10_2139_ssrn_4073642 crossref_primary_10_1039_D1NR02224E crossref_primary_10_1016_j_apcatb_2023_123585 crossref_primary_10_1016_j_cej_2020_128099 crossref_primary_10_1016_j_jpap_2021_100048 crossref_primary_10_1002_ente_202301520 crossref_primary_10_1016_j_jcis_2021_06_169 crossref_primary_10_1021_acs_energyfuels_3c01887 crossref_primary_10_1039_D2NJ04502H crossref_primary_10_1007_s41061_023_00420_1 crossref_primary_10_1021_acsami_0c12905 crossref_primary_10_1039_D1CY00803J crossref_primary_10_1016_j_mtener_2022_101065 crossref_primary_10_1016_j_jece_2020_104631 crossref_primary_10_1021_acs_energyfuels_3c05215 crossref_primary_10_2139_ssrn_4073612 crossref_primary_10_1016_j_seppur_2023_124667 crossref_primary_10_1021_acsami_0c04730 crossref_primary_10_1016_j_apcatb_2021_120440 crossref_primary_10_1016_j_molliq_2021_117820 crossref_primary_10_1016_j_seppur_2022_122875 crossref_primary_10_3390_pr11051413 crossref_primary_10_1007_s11814_024_00029_0 crossref_primary_10_1039_D1TC06029E crossref_primary_10_1051_e3sconf_202125202068 crossref_primary_10_1016_j_fuel_2024_131816 crossref_primary_10_1016_j_jcis_2022_04_035 crossref_primary_10_1016_j_molstruc_2024_138281 crossref_primary_10_1002_ece2_60 crossref_primary_10_1016_j_apsusc_2021_149031 crossref_primary_10_1039_D3SE01419C crossref_primary_10_1016_j_mtcata_2024_100054 crossref_primary_10_1039_D2TA09140B crossref_primary_10_1016_j_jcis_2022_03_137 crossref_primary_10_2139_ssrn_4125799 crossref_primary_10_1016_j_mssp_2023_107645 crossref_primary_10_1016_j_jcis_2024_01_005 crossref_primary_10_1002_smll_202408331 crossref_primary_10_1039_D0CY02156C crossref_primary_10_1021_acs_energyfuels_0c02637 crossref_primary_10_3390_catal13040715 crossref_primary_10_1016_j_jmst_2024_09_044 crossref_primary_10_1016_j_jcou_2020_101270 crossref_primary_10_2139_ssrn_4048798 crossref_primary_10_1016_j_cej_2020_125868 crossref_primary_10_1016_j_nanoms_2024_04_002 crossref_primary_10_1039_D2NR05718B crossref_primary_10_1016_j_apsusc_2022_153848 crossref_primary_10_1016_j_jmst_2021_08_019 crossref_primary_10_1016_j_apcatb_2023_123429 crossref_primary_10_1016_j_molliq_2021_117937 crossref_primary_10_1016_j_colsurfa_2022_129392 crossref_primary_10_1088_1361_6528_ad7e2f crossref_primary_10_1016_S1872_2067_22_64110_X crossref_primary_10_1039_D1TA10514K crossref_primary_10_1016_j_jcis_2021_07_064 crossref_primary_10_1016_j_jechem_2022_09_046 crossref_primary_10_1016_j_jece_2024_113265 crossref_primary_10_1016_j_xcrp_2021_100371 crossref_primary_10_1016_j_jwpe_2024_106857 crossref_primary_10_1016_j_jclepro_2021_129647 crossref_primary_10_1016_j_cej_2020_127838 crossref_primary_10_1016_j_jallcom_2024_176557 crossref_primary_10_1016_j_jece_2021_105244 crossref_primary_10_1007_s11356_021_17366_w crossref_primary_10_1002_cnma_202400466 crossref_primary_10_1016_j_jcis_2021_05_164 crossref_primary_10_1016_j_jmst_2020_02_037 crossref_primary_10_1016_j_cej_2021_129296 crossref_primary_10_1016_j_ccr_2022_214440 crossref_primary_10_1021_acsnano_0c05482 crossref_primary_10_1016_j_jtice_2023_104737 crossref_primary_10_1021_acsanm_4c04400 crossref_primary_10_1039_D3SE00516J crossref_primary_10_1016_j_chemosphere_2024_143054 crossref_primary_10_1016_j_cej_2024_157124 crossref_primary_10_1016_j_jcis_2023_04_015 crossref_primary_10_1007_s12598_024_02746_1 crossref_primary_10_1016_j_jcis_2022_12_063 crossref_primary_10_26599_NR_2025_94907054 crossref_primary_10_1016_j_scitotenv_2024_172816 crossref_primary_10_1016_j_jechem_2023_03_034 crossref_primary_10_1016_j_seppur_2023_125325 crossref_primary_10_1002_chem_202000708 crossref_primary_10_1016_j_jcis_2024_03_139 crossref_primary_10_1016_j_cej_2021_130502 crossref_primary_10_1016_j_envres_2024_120698 crossref_primary_10_1021_acs_energyfuels_0c01354 crossref_primary_10_1016_j_ccr_2022_214794 crossref_primary_10_1039_D1CY00716E crossref_primary_10_1039_D4SE00405A crossref_primary_10_1016_j_enchem_2021_100051 crossref_primary_10_3866_PKU_WHXB202306048 crossref_primary_10_1016_j_matdes_2023_112046 crossref_primary_10_1007_s00604_022_05349_8 crossref_primary_10_1016_j_susmat_2022_e00439 crossref_primary_10_1088_1361_6528_adad7c crossref_primary_10_1016_j_mtsust_2023_100350 crossref_primary_10_1016_j_jcis_2023_10_154 crossref_primary_10_1016_j_jallcom_2024_173730 crossref_primary_10_1016_j_mattod_2020_10_025 crossref_primary_10_1007_s11356_024_34382_8 crossref_primary_10_1039_D4NJ00296B crossref_primary_10_1016_j_jmst_2022_09_037 crossref_primary_10_1016_j_jcou_2022_102238 crossref_primary_10_1016_j_mtener_2020_100521 crossref_primary_10_1021_acs_iecr_2c03536 crossref_primary_10_1021_acsaem_1c01406 crossref_primary_10_1039_D0MA00938E crossref_primary_10_1002_chem_202400496 crossref_primary_10_1021_acsanm_1c03112 crossref_primary_10_1016_j_ceramint_2020_06_232 crossref_primary_10_1016_j_cjche_2023_02_028 crossref_primary_10_1016_j_psep_2024_03_050 crossref_primary_10_1016_j_mseb_2024_117953 crossref_primary_10_1088_2053_1583_ac9e66 crossref_primary_10_1016_j_energy_2024_133231 crossref_primary_10_1007_s12274_022_4629_3 crossref_primary_10_1016_j_carbon_2023_118345 crossref_primary_10_1007_s43939_024_00081_x crossref_primary_10_1002_asia_202400781 crossref_primary_10_1039_D3TA06548K crossref_primary_10_1007_s42823_023_00634_9 crossref_primary_10_1016_j_jcis_2024_05_190 crossref_primary_10_1021_acs_langmuir_3c01064 crossref_primary_10_3390_chemistry5010036 crossref_primary_10_1016_j_apsusc_2022_154319 crossref_primary_10_1002_er_7667 crossref_primary_10_1016_j_gee_2020_11_008 crossref_primary_10_1039_D2NJ02964B crossref_primary_10_1016_j_fuel_2023_127445 crossref_primary_10_1016_j_jcis_2021_07_113 crossref_primary_10_1021_acs_jpcc_3c06353 crossref_primary_10_1039_D1GC01303C crossref_primary_10_1021_acssuschemeng_4c02435 crossref_primary_10_1039_D1QI00722J crossref_primary_10_1039_D1TA02527A crossref_primary_10_1016_j_cplett_2024_141818 crossref_primary_10_1016_j_carbon_2024_119758 crossref_primary_10_1021_acs_energyfuels_3c01333 crossref_primary_10_1002_solr_202100603 crossref_primary_10_1016_j_cej_2021_131402 crossref_primary_10_1039_D2TA08983A crossref_primary_10_1016_j_jcis_2021_01_099 crossref_primary_10_1016_j_cherd_2021_11_006 crossref_primary_10_1016_j_jcis_2021_10_034 crossref_primary_10_1016_j_apcatb_2020_119239 crossref_primary_10_1016_j_ccr_2024_215752 crossref_primary_10_3390_molecules28083292 crossref_primary_10_1007_s42765_021_00122_7 crossref_primary_10_1002_sstr_202200104 crossref_primary_10_1016_j_ccr_2025_216460 crossref_primary_10_1007_s10854_023_09913_7 crossref_primary_10_1016_j_mssp_2022_106517 crossref_primary_10_1080_10643389_2022_2101857 crossref_primary_10_1016_S1872_2067_22_64102_0 crossref_primary_10_1021_acs_energyfuels_1c00958 crossref_primary_10_1016_j_jallcom_2021_159266 |
Cites_doi | 10.1039/C8TA10410G 10.1039/C4MH00040D 10.1021/acsami.5b09901 10.1002/anie.201207199 10.1021/es5046309 10.1021/cr068357u 10.1016/j.apcatb.2017.05.064 10.1021/jacs.9b02997 10.1021/acssuschemeng.8b03965 10.1007/s12274-014-0514-z 10.1039/C7TA10404A 10.1021/jacs.6b10834 10.1016/j.apsusc.2018.01.071 10.1039/C8TA11475G 10.1002/adsu.201700003 10.1016/j.apsusc.2014.07.153 10.1016/j.enpol.2012.06.007 10.1016/j.apcatb.2012.12.024 10.1002/cctc.201402195 10.1021/acs.jpclett.9b00736 10.1002/adfm.201800136 10.1039/c1jm12620b 10.1021/acs.chemrev.8b00400 10.1016/j.nanoen.2017.12.003 10.1021/acs.chemmater.7b02847 10.1039/C8TA09302D 10.1002/adma.201704649 10.1021/acs.langmuir.8b03456 10.1016/j.jcis.2015.11.022 10.1016/j.apsusc.2018.01.193 10.1016/j.apcatb.2019.117771 10.1016/j.jcou.2016.04.006 10.1002/adma.201102306 10.1021/jacs.6b12273 10.1021/acsami.5b10613 10.1016/j.cej.2019.121939 10.1002/smll.201603938 10.1002/cssc.201800083 10.1016/j.jcat.2018.03.009 10.1039/C9TA01061K 10.1016/j.jcis.2019.01.005 10.1016/j.apcatb.2017.04.009 10.1016/j.apcatb.2017.02.076 10.1016/j.jcat.2017.06.006 10.1016/j.jcou.2019.05.032 10.1016/j.apcatb.2017.07.022 10.1038/nmat2317 10.1016/j.jcis.2019.04.037 10.1002/adma.201804282 10.1021/acsenergylett.6b00247 10.1021/jacs.7b10997 10.1021/acsami.8b22434 10.1016/j.cej.2016.09.050 10.1016/j.cattod.2017.05.033 10.1039/C8TA05033C 10.1021/jp505921s 10.1016/j.apcatb.2019.05.002 10.1039/C7TA03557H 10.1021/acs.nanolett.6b02094 10.1016/j.apcatb.2018.08.056 10.1002/aenm.201602725 10.1021/jacs.6b02692 10.1016/j.apcatb.2018.12.049 10.1039/c1jm12844b 10.1016/j.carbon.2019.03.019 10.1016/j.apsusc.2018.08.245 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2019.12.091 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 417 |
ExternalDocumentID | 10_1016_j_jcis_2019_12_091 S0021979719315589 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- RIG SCB SCE SEW SSH VH1 WUQ ZGI ZXP 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c366t-85536d6f0aa02a41f79a979179fb2da1253da931d5e5f21c166c79c4802d6c6d3 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 04:33:42 EDT 2025 Thu Jul 10 19:28:57 EDT 2025 Thu Apr 24 22:59:37 EDT 2025 Tue Jul 01 01:18:49 EDT 2025 Fri Feb 23 02:48:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | g-C3N4 Alkalized Ti3C2 Photocatalytic CO2 reduction MXenes |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c366t-85536d6f0aa02a41f79a979179fb2da1253da931d5e5f21c166c79c4802d6c6d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2336245514 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2400525336 proquest_miscellaneous_2336245514 crossref_citationtrail_10_1016_j_jcis_2019_12_091 crossref_primary_10_1016_j_jcis_2019_12_091 elsevier_sciencedirect_doi_10_1016_j_jcis_2019_12_091 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-22 |
PublicationDateYYYYMMDD | 2020-03-22 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | Journal of colloid and interface science |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Liu, Xiao, Goddard (b0325) 2016; 138 Liu, Chen, Li, Peng, Xiong (b0155) 2017; 211 Sun, Wang, Li, Lyu, Butburee, Luo, Wang, Fischer, Zhang, Wu, Wang (b0165) 2017; 1 Dong, Wu, Sun, Fu, Wu, Lee (b0280) 2011; 21 Shen, Zhang, Wang, Tian, Jin, Guo, Wang, Shi (b0295) 2019; 7 Wang, Xu, Chen, Zeng, Zhang, Zhou, Yang, Huang, Lai, Cheng, Hu, Xiong, Guo, Zhou (b0270) 2018 Khatib (b0005) 2012; 48 Gao, Jiao, Waclawik, Du (b0140) 2016; 138 Li, Gao, Zhou, Fan, Han, Xu, Wang, Xiao, Li, Zou (b0300) 2016; 16 Ye, Wang, Liu, Ye, Wang (b0225) 2018; 11 Wang, Maeda, Thomas, Takanabe, Xin, Carlsson, Domen, Antonietti (b0230) 2009; 8 Cheng, Li, Zhang, Xiang (b0180) 2019; 10 Yu, Yin, Wang, Zhang (b0200) 2019; 35 Yang, Wu, Xiao, Tang, Shen, Li, Zhou, Zou (b0310) 2019; 255 Wang, Fu, Zheng (b0075) 2019; 254 Wang, Yong, Chen, Jiang, Zhang, Shao, Zhang, Yan, Pan, Xie (b0330) 2018; 140 Di, Zhu, Cheng, Yu, Xu (b0105) 2017; 352 Liu, Zhang, Wang, Dawson, Chen (b0260) 2011; 21 Seh, Fredrickson, Anasori, Kibsgaard, Strickler, Lukatskaya, Gogotsi, Jaramillo, Vojvodic (b0185) 2016; 1 He, Zhang, Teng, Fan (b0100) 2015; 49 Li, Yuan, Lin, Yang, Xu, Du, Xie, Lin, Sun (b0275) 2017; 7 Yu, Zhou, Wang, Zhao, Qiu (b0195) 2018; 44 Cao, Shen, Tong, Fu, Yu (b0220) 2018; 28 Hayat, Khan, Rahman, Mane, Khan, Sohail, Rahman, Shaishta, Chi, Wu (b0095) 2019; 548 Sun, Fischer, Li, Hu, Tang, Wang, Wu, Hankel, Searles, Wang (b0170) 2017; 216 Fu, Yang, Liu, Chen, Yao, Xie, Zhong, Wang, Li, Li, Zeng (b0010) 2019; 34 Lee, Liao, Tsai, Huang, Wu (b0240) 2013; 132–133 Han, Zhang, Ye, Wang, Ma, Su, Xie, Zhou, Wong, Ye (b0065) 2019; 7 Alhabeb, Maleski, Anasori, Lelyukh, Clark, Sin, Gogotsi (b0255) 2017; 29 Yang, Zhang, Huang, Zeng, Huang, Lai, Zhou, Wang, Guo, Xue, Deng, Cheng, Xiong (b0265) 2019; 245 Guo, Tang, Xie, Tian, Feng, Zhou, Jiang (b0290) 2017; 218 Fu, Zhu, Jiang, Cheng, You, Yu (b0070) 2017; 13 Low, Zhang, Tong, Shen, Yu (b0215) 2018; 361 Nie, Zhang, Fu, Cheng, Yu (b0115) 2018; 441 Sun, Wang, Wu, Wang (b0035) 2018; 300 Ran, Jaroniec, Qiao (b0020) 2018; 30 Sun, Yang, Liu, Wang, Wu (b0250) 2014; 315 Sun, Zhou, Li, Ren, Qiao, Li, Fu (b0305) 2018; 30 Tang, Sun, Wang, Li, Wang, Wu (b0040) 2019; 463 Attanayake, Abeyweera, Thenuwara, Anasori, Gogotsi, Sun, Strongin (b0190) 2018; 6 Jo, Kumar, Eslava, Tonda (b0125) 2018; 239 Tan, Ong, Chai, Mohamed (b0245) 2017; 308 Jiao, Wei, Zhao, Zhao, Duan, Liu, Pang, Li, Jiang, Wang (b0055) 2017; 209 Jiang, Wan, Li, Yuan, Zhao, Wong (b0110) 2018; 9 Li, Gao, Xiong, Liao, Shih (b0135) 2018; 439 Habisreutinger, Schmidt-Mende, Stolarczyk (b0060) 2013; 52 Butburee, Kotchasarn, Hirunsit, Sun, Tang, Khemthong, Sangkhun, Thongsuwan, Kumnorkaew, Wang, Faungnawakij (b0050) 2019; 7 N.T. Thanh Truc, L. Giang Bach, N. Thi Hanh, T.-D. Pham, N. Thi Phuong Le Chi, D.T. Tran, M.V. Nguyen, V.N. Nguyen, The superior photocatalytic activity of Nb doped TiO2/g-C3N4 direct Z-scheme system for efficient conversion of CO2 into valuable fuels, J. Colloid Interface Sci. 540 (2019) 1–8. Doi: 10.1016/j.jcis.2019.01.005. Sakakura, Choi, Yasuda (b0145) 2007; 107 Zhang, Wang, Du, Wang, Ma, Yu (b0090) 2016; 464 Yu, Zhang, Kuang, Ding, Yao, Xu, Cao (b0315) 2014; 118 Bhosale, Jain, Vinod, Kumar, Ogale (b0130) 2019; 11 Fu, Li, Yun, Lee, Ryu, Kim (b0205) 2019; 375 Tan, Maroto-Valer (b0015) 2019; 7 Zhang, Zhang, Li, Zhao, Wu, Zhou (b0210) 2017; 5 Naguib, Kurtoglu, Presser, Lu, Niu, Heon, Hultman, Gogotsi, Barsoum (b0175) 2011; 23 Zhong, Sa, Li, He, Li, Bi, Zhuang, Yu, Zou (b0045) 2019; 141 Olowoyo, Kumar, Singh, Oninla, Babalola, Valdés, Vorontsov, Kumar (b0025) 2019; 147 Wang, Yao, Fan, Zhang, Wang, Zang, Li (b0120) 2016; 8 Li, Yu, Jaroniec, Chen (b0150) 2019 Xia, Yan, Wang, (David) Lou (b0285) 2014; 1 Li, Yu, Quan, Chen, Zhang (b0320) 2016; 8 Ong, Tan, Chai, Yong, Mohamed (b0235) 2014; 7 Wang, Sun, Li, Tang, Wu (b0030) 2016; 14 Rahman, Davey, Qiao (b0080) 2018; 6 Hong, Zhang, Wang, Zhou, Xu (b0160) 2014; 6 Wang, Chen, Yong, Zhang, Li, Shao, Sun, Pan, Xie (b0335) 2017; 139 Wang (10.1016/j.jcis.2019.12.091_b0075) 2019; 254 Wang (10.1016/j.jcis.2019.12.091_b0335) 2017; 139 Zhang (10.1016/j.jcis.2019.12.091_b0210) 2017; 5 Alhabeb (10.1016/j.jcis.2019.12.091_b0255) 2017; 29 Liu (10.1016/j.jcis.2019.12.091_b0155) 2017; 211 Wang (10.1016/j.jcis.2019.12.091_b0270) 2018 Wang (10.1016/j.jcis.2019.12.091_b0120) 2016; 8 Sun (10.1016/j.jcis.2019.12.091_b0165) 2017; 1 Ye (10.1016/j.jcis.2019.12.091_b0225) 2018; 11 Zhong (10.1016/j.jcis.2019.12.091_b0045) 2019; 141 Li (10.1016/j.jcis.2019.12.091_b0300) 2016; 16 Bhosale (10.1016/j.jcis.2019.12.091_b0130) 2019; 11 Sakakura (10.1016/j.jcis.2019.12.091_b0145) 2007; 107 Butburee (10.1016/j.jcis.2019.12.091_b0050) 2019; 7 Li (10.1016/j.jcis.2019.12.091_b0275) 2017; 7 Yu (10.1016/j.jcis.2019.12.091_b0315) 2014; 118 Sun (10.1016/j.jcis.2019.12.091_b0305) 2018; 30 Low (10.1016/j.jcis.2019.12.091_b0215) 2018; 361 Hayat (10.1016/j.jcis.2019.12.091_b0095) 2019; 548 Tan (10.1016/j.jcis.2019.12.091_b0015) 2019; 7 Seh (10.1016/j.jcis.2019.12.091_b0185) 2016; 1 Tang (10.1016/j.jcis.2019.12.091_b0040) 2019; 463 Di (10.1016/j.jcis.2019.12.091_b0105) 2017; 352 Yang (10.1016/j.jcis.2019.12.091_b0310) 2019; 255 Sun (10.1016/j.jcis.2019.12.091_b0035) 2018; 300 Zhang (10.1016/j.jcis.2019.12.091_b0090) 2016; 464 Sun (10.1016/j.jcis.2019.12.091_b0250) 2014; 315 Li (10.1016/j.jcis.2019.12.091_b0150) 2019 Jiao (10.1016/j.jcis.2019.12.091_b0055) 2017; 209 Hong (10.1016/j.jcis.2019.12.091_b0160) 2014; 6 Li (10.1016/j.jcis.2019.12.091_b0320) 2016; 8 Olowoyo (10.1016/j.jcis.2019.12.091_b0025) 2019; 147 Rahman (10.1016/j.jcis.2019.12.091_b0080) 2018; 6 Khatib (10.1016/j.jcis.2019.12.091_b0005) 2012; 48 Yu (10.1016/j.jcis.2019.12.091_b0200) 2019; 35 Tan (10.1016/j.jcis.2019.12.091_b0245) 2017; 308 Li (10.1016/j.jcis.2019.12.091_b0135) 2018; 439 Naguib (10.1016/j.jcis.2019.12.091_b0175) 2011; 23 Attanayake (10.1016/j.jcis.2019.12.091_b0190) 2018; 6 He (10.1016/j.jcis.2019.12.091_b0100) 2015; 49 Wang (10.1016/j.jcis.2019.12.091_b0030) 2016; 14 Fu (10.1016/j.jcis.2019.12.091_b0010) 2019; 34 Xia (10.1016/j.jcis.2019.12.091_b0285) 2014; 1 Han (10.1016/j.jcis.2019.12.091_b0065) 2019; 7 Fu (10.1016/j.jcis.2019.12.091_b0070) 2017; 13 Guo (10.1016/j.jcis.2019.12.091_b0290) 2017; 218 Gao (10.1016/j.jcis.2019.12.091_b0140) 2016; 138 Dong (10.1016/j.jcis.2019.12.091_b0280) 2011; 21 Jo (10.1016/j.jcis.2019.12.091_b0125) 2018; 239 Yu (10.1016/j.jcis.2019.12.091_b0195) 2018; 44 Lee (10.1016/j.jcis.2019.12.091_b0240) 2013; 132–133 Sun (10.1016/j.jcis.2019.12.091_b0170) 2017; 216 Cao (10.1016/j.jcis.2019.12.091_b0220) 2018; 28 Fu (10.1016/j.jcis.2019.12.091_b0205) 2019; 375 Liu (10.1016/j.jcis.2019.12.091_b0325) 2016; 138 Wang (10.1016/j.jcis.2019.12.091_b0330) 2018; 140 Wang (10.1016/j.jcis.2019.12.091_b0230) 2009; 8 Habisreutinger (10.1016/j.jcis.2019.12.091_b0060) 2013; 52 Cheng (10.1016/j.jcis.2019.12.091_b0180) 2019; 10 Jiang (10.1016/j.jcis.2019.12.091_b0110) 2018; 9 Yang (10.1016/j.jcis.2019.12.091_b0265) 2019; 245 Nie (10.1016/j.jcis.2019.12.091_b0115) 2018; 441 Shen (10.1016/j.jcis.2019.12.091_b0295) 2019; 7 Ran (10.1016/j.jcis.2019.12.091_b0020) 2018; 30 10.1016/j.jcis.2019.12.091_b0085 Ong (10.1016/j.jcis.2019.12.091_b0235) 2014; 7 Liu (10.1016/j.jcis.2019.12.091_b0260) 2011; 21 |
References_xml | – volume: 30 start-page: 1704649 year: 2018 ident: b0020 article-title: Cocatalysts in semiconductor-based photocatalytic CO publication-title: Adv. Mater. – volume: 7 start-page: 1602725 year: 2017 ident: b0275 article-title: Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification publication-title: Adv. Energy Mater. – volume: 7 start-page: 9368 year: 2019 end-page: 9385 ident: b0015 article-title: A review of nanostructured non-titania photocatalysts and hole scavenging agents for CO publication-title: J. Mater. Chem. A. – volume: 245 start-page: 87 year: 2019 end-page: 99 ident: b0265 article-title: Boron nitride quantum dots decorated ultrathin porous g-C publication-title: Appl. Catal. B – volume: 8 start-page: 3765 year: 2016 end-page: 3775 ident: b0120 article-title: Indirect Z-scheme BiOI/g-C publication-title: ACS Appl. Mater. Interfaces – volume: 239 start-page: 586 year: 2018 end-page: 598 ident: b0125 article-title: Construction of Bi publication-title: Appl. Catal. B – volume: 35 start-page: 2909 year: 2019 end-page: 2916 ident: b0200 article-title: Decorating g-C publication-title: Langmuir – volume: 16 start-page: 5547 year: 2016 end-page: 5552 ident: b0300 article-title: Construction and nanoscale detection of interfacial charge transfer of elegant Z-scheme WO publication-title: Nano Lett. – volume: 254 start-page: 270 year: 2019 end-page: 282 ident: b0075 article-title: Insights into photocatalytic CO publication-title: Appl. Catal. B – volume: 141 start-page: 7615 year: 2019 end-page: 7621 ident: b0045 article-title: A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 16882 year: 2018 end-page: 16889 ident: b0190 article-title: Vertically aligned MoS publication-title: J. Mater. Chem. A – volume: 29 start-page: 7633 year: 2017 end-page: 7644 ident: b0255 article-title: Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti publication-title: Chem. Mater. – volume: 10 start-page: 3488 year: 2019 end-page: 3494 ident: b0180 article-title: Two-dimensional transition metal MXene-based photocatalysts for solar fuel generation publication-title: J. Phys. Chem. Lett. – volume: 375 start-page: 121939 year: 2019 ident: b0205 article-title: Two-dimensional titanium carbide (MXene)-wrapped sisal-Like NiCo publication-title: Chem. Eng. J. – volume: 132–133 start-page: 445 year: 2013 end-page: 451 ident: b0240 article-title: A novel twin reactor for CO publication-title: Appl. Catal. B – volume: 139 start-page: 4737 year: 2017 end-page: 4742 ident: b0335 article-title: Giant electron-hole interactions in confined layered structures for molecular oxygen activation publication-title: J. Am. Chem. Soc. – volume: 463 start-page: 456 year: 2019 end-page: 462 ident: b0040 article-title: Enhanced CO publication-title: Appl. Surf. Sci. – volume: 14 start-page: 143 year: 2016 end-page: 151 ident: b0030 article-title: Surprisingly advanced CO publication-title: J. CO – volume: 6 start-page: 1305 year: 2018 end-page: 1322 ident: b0080 article-title: Carbon, nitrogen and phosphorus containing metal-free photocatalysts for hydrogen production: progress and challenges publication-title: J. Mater. Chem. A – volume: 352 start-page: 532 year: 2017 end-page: 541 ident: b0105 article-title: A direct Z-scheme g-C publication-title: J. Catal. – volume: 464 start-page: 89 year: 2016 end-page: 95 ident: b0090 article-title: Photocatalytic CO publication-title: J. Colloid Interface Sci. – volume: 300 start-page: 160 year: 2018 end-page: 172 ident: b0035 article-title: g-C publication-title: Catal. Today – volume: 7 start-page: 1556 year: 2019 end-page: 1563 ident: b0295 article-title: Carbon-vacancy modified graphitic carbon nitride: enhanced CO publication-title: J. Mater. Chem. A – volume: 1 start-page: 1700003 year: 2017 ident: b0165 article-title: Enriching CO publication-title: Adv. Sustain. Syst. – volume: 28 start-page: 1800136 year: 2018 ident: b0220 article-title: 2D/2D heterojunction of ultrathin MXene/Bi publication-title: Adv. Funct. Mater. – volume: 255 start-page: 117771 year: 2019 ident: b0310 article-title: Urchin-like hierarchical CoZnAl-LDH/RGO/g-C publication-title: Appl. Catal. B – volume: 44 start-page: 181 year: 2018 end-page: 190 ident: b0195 article-title: Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene publication-title: Nano Energy – volume: 7 start-page: 9726 year: 2019 end-page: 9735 ident: b0065 article-title: Chainmail co-catalyst of NiO shell-encapsulated Ni for improving photocatalytic CO publication-title: J. Mater. Chem. A. – volume: 441 start-page: 12 year: 2018 end-page: 22 ident: b0115 article-title: Self-assembled hierarchical direct Z-scheme g-C publication-title: Appl. Surf. Sci. – volume: 21 start-page: 14398 year: 2011 ident: b0260 article-title: Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity publication-title: J. Mater. Chem. – volume: 48 start-page: 737 year: 2012 end-page: 743 ident: b0005 article-title: IEA world energy outlook 2011—a comment publication-title: Energy Policy – volume: 8 start-page: 2111 year: 2016 end-page: 2119 ident: b0320 article-title: Uncovering the key role of the fermi level of the electron mediator in a Z-scheme photocatalyst by detecting the charge transfer process of WO publication-title: ACS Appl. Mater. Interfaces. – volume: 7 start-page: 8156 year: 2019 end-page: 8166 ident: b0050 article-title: New understanding of crystal control and facet selectivity of titanium dioxide ruling photocatalytic performance publication-title: J. Mater. Chem. A. – volume: 13 start-page: 1603938 year: 2017 ident: b0070 article-title: Hierarchical porous O-doped g-C publication-title: Small – reference: N.T. Thanh Truc, L. Giang Bach, N. Thi Hanh, T.-D. Pham, N. Thi Phuong Le Chi, D.T. Tran, M.V. Nguyen, V.N. Nguyen, The superior photocatalytic activity of Nb doped TiO2/g-C3N4 direct Z-scheme system for efficient conversion of CO2 into valuable fuels, J. Colloid Interface Sci. 540 (2019) 1–8. Doi: 10.1016/j.jcis.2019.01.005. – volume: 49 start-page: 649 year: 2015 end-page: 656 ident: b0100 article-title: New application of Z-scheme Ag publication-title: Environ. Sci. Technol. – volume: 118 start-page: 20982 year: 2014 end-page: 20988 ident: b0315 article-title: Adjustment and control of energy levels for TiO publication-title: J. Phys. Chem. C. – volume: 308 start-page: 248 year: 2017 end-page: 255 ident: b0245 article-title: Photocatalytic reduction of CO publication-title: Chem. Eng. J. – volume: 52 start-page: 7372 year: 2013 end-page: 7408 ident: b0060 article-title: Photocatalytic reduction of CO publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 6174 year: 2019 end-page: 6183 ident: b0130 article-title: Direct Z-scheme g-C publication-title: ACS Appl. Mater. Interfaces – volume: 211 start-page: 1 year: 2017 end-page: 10 ident: b0155 article-title: Enhanced photocatalytic conversion of greenhouse gas CO publication-title: Appl. Catal. B – volume: 11 start-page: 1606 year: 2018 end-page: 1611 ident: b0225 article-title: Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surface-alkalinized titanium carbide MXene as cocatalyst publication-title: ChemSusChem – volume: 6 start-page: 2315 year: 2014 end-page: 2321 ident: b0160 article-title: Photocatalytic reduction of carbon dioxide over self-assembled carbon nitride and layered double hydroxide: the role of carbon dioxide enrichment publication-title: ChemCatChem – volume: 147 start-page: 385 year: 2019 end-page: 397 ident: b0025 article-title: Self-assembled reduced graphene oxide-TiO publication-title: Carbon – volume: 138 start-page: 15853 year: 2016 end-page: 15856 ident: b0325 article-title: Schottky-Barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 6292 year: 2016 end-page: 6297 ident: b0140 article-title: Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide publication-title: J. Am. Chem. Soc. – year: 2019 ident: b0150 article-title: Cocatalysts for selective photoreduction of CO publication-title: Chem. Rev. – volume: 5 start-page: 12899 year: 2017 end-page: 12903 ident: b0210 article-title: Ti publication-title: J. Mater. Chem. A. – volume: 140 start-page: 1760 year: 2018 end-page: 1766 ident: b0330 article-title: Oxygen-vacancy-mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation publication-title: J. Am. Chem. Soc. – volume: 548 start-page: 197 year: 2019 end-page: 205 ident: b0095 article-title: Synthesis and optimization of the trimesic acid modified polymeric carbon nitride for enhanced photocatalytic reduction of CO publication-title: J. Colloid Interface Sci. – volume: 1 start-page: 379 year: 2014 end-page: 399 ident: b0285 article-title: Recent progress on graphene-based hybrid electrocatalysts publication-title: Mater. Horiz. – volume: 30 start-page: 1804282 year: 2018 ident: b0305 article-title: Synthesis of particulate hierarchical tandem heterojunctions toward optimized photocatalytic hydrogen production publication-title: Adv. Mater. – volume: 107 start-page: 2365 year: 2007 end-page: 2387 ident: b0145 article-title: Transformation of carbon dioxide publication-title: Chem. Rev. – volume: 7 start-page: 1528 year: 2014 end-page: 1547 ident: b0235 article-title: Self-assembly of nitrogen-doped TiO2 with exposed 001 facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane publication-title: Nano Res. – volume: 315 start-page: 360 year: 2014 end-page: 367 ident: b0250 article-title: Visible-light CO publication-title: Appl. Surf. Sci. – volume: 1 start-page: 589 year: 2016 end-page: 594 ident: b0185 article-title: Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution publication-title: ACS Energy Lett. – volume: 34 start-page: 63 year: 2019 end-page: 73 ident: b0010 article-title: Photocatalytic conversion of carbon dioxide: from products to design the catalysts publication-title: J. CO – volume: 9 year: 2018 ident: b0110 article-title: A hierarchical Z-scheme α-Fe publication-title: Adv. Mater. – volume: 21 start-page: 15171 year: 2011 ident: b0280 article-title: Efficient synthesis of polymeric g-C publication-title: J. Mater. Chem. – volume: 8 start-page: 76 year: 2009 end-page: 80 ident: b0230 article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light publication-title: Nat. Mater. – volume: 218 start-page: 664 year: 2017 end-page: 671 ident: b0290 article-title: P-doped tubular g-C publication-title: Appl. Catal. B – volume: 209 start-page: 228 year: 2017 end-page: 239 ident: b0055 article-title: AuPd/3DOM-TiO publication-title: Appl. Catal. B – volume: 439 start-page: 552 year: 2018 end-page: 559 ident: b0135 article-title: Enhanced selective photocatalytic reduction of CO publication-title: Appl. Surf. Sci. – volume: 216 start-page: 146 year: 2017 end-page: 155 ident: b0170 article-title: Enhanced CO publication-title: Appl. Catal. B – volume: 361 start-page: 255 year: 2018 end-page: 266 ident: b0215 article-title: TiO publication-title: J. Catal. – year: 2018 ident: b0270 article-title: Alkali metal-assisted synthesis of graphite carbon nitride with tunable band-gap for enhanced visible-light-driven photocatalytic performance publication-title: ACS Sustain. Chem. Eng. – volume: 23 start-page: 4248 year: 2011 end-page: 4253 ident: b0175 article-title: Two-dimensional nanocrystals produced by exfoliation of Ti publication-title: Adv. Mater. – volume: 7 start-page: 9368 year: 2019 ident: 10.1016/j.jcis.2019.12.091_b0015 article-title: A review of nanostructured non-titania photocatalysts and hole scavenging agents for CO2 photoreduction processes publication-title: J. Mater. Chem. A. doi: 10.1039/C8TA10410G – volume: 1 start-page: 379 year: 2014 ident: 10.1016/j.jcis.2019.12.091_b0285 article-title: Recent progress on graphene-based hybrid electrocatalysts publication-title: Mater. Horiz. doi: 10.1039/C4MH00040D – volume: 8 start-page: 3765 year: 2016 ident: 10.1016/j.jcis.2019.12.091_b0120 article-title: Indirect Z-scheme BiOI/g-C3N4 photocatalysts with enhanced photoreduction CO2 activity under visible light irradiation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b09901 – volume: 52 start-page: 7372 year: 2013 ident: 10.1016/j.jcis.2019.12.091_b0060 article-title: Photocatalytic reduction of CO2 on TiO2 and other semiconductors publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201207199 – volume: 49 start-page: 649 year: 2015 ident: 10.1016/j.jcis.2019.12.091_b0100 article-title: New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel publication-title: Environ. Sci. Technol. doi: 10.1021/es5046309 – volume: 107 start-page: 2365 year: 2007 ident: 10.1016/j.jcis.2019.12.091_b0145 article-title: Transformation of carbon dioxide publication-title: Chem. Rev. doi: 10.1021/cr068357u – volume: 216 start-page: 146 year: 2017 ident: 10.1016/j.jcis.2019.12.091_b0170 article-title: Enhanced CO2 photocatalytic reduction on alkali-decorated graphitic carbon nitride publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.05.064 – volume: 141 start-page: 7615 year: 2019 ident: 10.1016/j.jcis.2019.12.091_b0045 article-title: A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02997 – year: 2018 ident: 10.1016/j.jcis.2019.12.091_b0270 article-title: Alkali metal-assisted synthesis of graphite carbon nitride with tunable band-gap for enhanced visible-light-driven photocatalytic performance publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b03965 – volume: 7 start-page: 1528 year: 2014 ident: 10.1016/j.jcis.2019.12.091_b0235 article-title: Self-assembly of nitrogen-doped TiO2 with exposed 001 facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane publication-title: Nano Res. doi: 10.1007/s12274-014-0514-z – volume: 6 start-page: 1305 year: 2018 ident: 10.1016/j.jcis.2019.12.091_b0080 article-title: Carbon, nitrogen and phosphorus containing metal-free photocatalysts for hydrogen production: progress and challenges publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10404A – volume: 138 start-page: 15853 year: 2016 ident: 10.1016/j.jcis.2019.12.091_b0325 article-title: Schottky-Barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b10834 – volume: 439 start-page: 552 year: 2018 ident: 10.1016/j.jcis.2019.12.091_b0135 article-title: Enhanced selective photocatalytic reduction of CO2 to CH4 over plasmonic Au modified g-C3N4 photocatalyst under UV–vis light irradiation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.01.071 – volume: 7 start-page: 8156 year: 2019 ident: 10.1016/j.jcis.2019.12.091_b0050 article-title: New understanding of crystal control and facet selectivity of titanium dioxide ruling photocatalytic performance publication-title: J. Mater. Chem. A. doi: 10.1039/C8TA11475G – volume: 1 start-page: 1700003 year: 2017 ident: 10.1016/j.jcis.2019.12.091_b0165 article-title: Enriching CO2 activation sites on graphitic carbon nitride with simultaneous introduction of electron-transfer promoters for superior photocatalytic CO2-to-fuel conversion publication-title: Adv. Sustain. Syst. doi: 10.1002/adsu.201700003 – volume: 315 start-page: 360 year: 2014 ident: 10.1016/j.jcis.2019.12.091_b0250 article-title: Visible-light CO2 photocatalytic reduction performance of ball-flower-like Bi2WO6 synthesized without organic precursor: effect of post-calcination and water vapor publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.07.153 – volume: 48 start-page: 737 year: 2012 ident: 10.1016/j.jcis.2019.12.091_b0005 article-title: IEA world energy outlook 2011—a comment publication-title: Energy Policy doi: 10.1016/j.enpol.2012.06.007 – volume: 132–133 start-page: 445 year: 2013 ident: 10.1016/j.jcis.2019.12.091_b0240 article-title: A novel twin reactor for CO2 photoreduction to mimic artificial photosynthesis publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2012.12.024 – volume: 6 start-page: 2315 year: 2014 ident: 10.1016/j.jcis.2019.12.091_b0160 article-title: Photocatalytic reduction of carbon dioxide over self-assembled carbon nitride and layered double hydroxide: the role of carbon dioxide enrichment publication-title: ChemCatChem doi: 10.1002/cctc.201402195 – volume: 10 start-page: 3488 year: 2019 ident: 10.1016/j.jcis.2019.12.091_b0180 article-title: Two-dimensional transition metal MXene-based photocatalysts for solar fuel generation publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b00736 – volume: 28 start-page: 1800136 year: 2018 ident: 10.1016/j.jcis.2019.12.091_b0220 article-title: 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800136 – volume: 21 start-page: 14398 year: 2011 ident: 10.1016/j.jcis.2019.12.091_b0260 article-title: Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity publication-title: J. Mater. Chem. doi: 10.1039/c1jm12620b – year: 2019 ident: 10.1016/j.jcis.2019.12.091_b0150 article-title: Cocatalysts for selective photoreduction of CO2 into solar fuels publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00400 – volume: 44 start-page: 181 year: 2018 ident: 10.1016/j.jcis.2019.12.091_b0195 article-title: Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.003 – volume: 29 start-page: 7633 year: 2017 ident: 10.1016/j.jcis.2019.12.091_b0255 article-title: Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene) publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02847 – volume: 7 start-page: 1556 year: 2019 ident: 10.1016/j.jcis.2019.12.091_b0295 article-title: Carbon-vacancy modified graphitic carbon nitride: enhanced CO2 photocatalytic reduction performance and mechanism probing publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09302D – volume: 30 start-page: 1704649 year: 2018 ident: 10.1016/j.jcis.2019.12.091_b0020 article-title: Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities publication-title: Adv. Mater. doi: 10.1002/adma.201704649 – volume: 35 start-page: 2909 year: 2019 ident: 10.1016/j.jcis.2019.12.091_b0200 article-title: Decorating g-C3N4 nanosheets with Ti3C2 MXene nanoparticles for efficient oxygen reduction reaction publication-title: Langmuir doi: 10.1021/acs.langmuir.8b03456 – volume: 464 start-page: 89 year: 2016 ident: 10.1016/j.jcis.2019.12.091_b0090 article-title: Photocatalytic CO2 reduction over B4 C/C3N4 with internal electric field under visible light irradiation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2015.11.022 – volume: 441 start-page: 12 year: 2018 ident: 10.1016/j.jcis.2019.12.091_b0115 article-title: Self-assembled hierarchical direct Z-scheme g-C3N4/ZnO microspheres with enhanced photocatalytic CO2 reduction performance publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.01.193 – volume: 255 start-page: 117771 year: 2019 ident: 10.1016/j.jcis.2019.12.091_b0310 article-title: Urchin-like hierarchical CoZnAl-LDH/RGO/g-C3N4 hybrid as a Z-scheme photocatalyst for efficient and selective CO2 reduction publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.117771 – volume: 14 start-page: 143 year: 2016 ident: 10.1016/j.jcis.2019.12.091_b0030 article-title: Surprisingly advanced CO2 photocatalytic conversion over thiourea derived g-C3N4 with water vapor while introducing 200–420nm UV light publication-title: J. CO2 Utilizat. doi: 10.1016/j.jcou.2016.04.006 – volume: 23 start-page: 4248 year: 2011 ident: 10.1016/j.jcis.2019.12.091_b0175 article-title: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 publication-title: Adv. Mater. doi: 10.1002/adma.201102306 – volume: 139 start-page: 4737 year: 2017 ident: 10.1016/j.jcis.2019.12.091_b0335 article-title: Giant electron-hole interactions in confined layered structures for molecular oxygen activation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12273 – volume: 8 start-page: 2111 year: 2016 ident: 10.1016/j.jcis.2019.12.091_b0320 article-title: Uncovering the key role of the fermi level of the electron mediator in a Z-scheme photocatalyst by detecting the charge transfer process of WO3-metal-gC3N4 (Metal = Cu, Ag, Au) publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.5b10613 – volume: 375 start-page: 121939 year: 2019 ident: 10.1016/j.jcis.2019.12.091_b0205 article-title: Two-dimensional titanium carbide (MXene)-wrapped sisal-Like NiCo2S4 as positive electrode for high-performance hybrid pouch-type asymmetric supercapacitor publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.121939 – volume: 13 start-page: 1603938 year: 2017 ident: 10.1016/j.jcis.2019.12.091_b0070 article-title: Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity publication-title: Small doi: 10.1002/smll.201603938 – volume: 9 year: 2018 ident: 10.1016/j.jcis.2019.12.091_b0110 article-title: A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction publication-title: Adv. Mater. – volume: 11 start-page: 1606 year: 2018 ident: 10.1016/j.jcis.2019.12.091_b0225 article-title: Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surface-alkalinized titanium carbide MXene as cocatalyst publication-title: ChemSusChem doi: 10.1002/cssc.201800083 – volume: 361 start-page: 255 year: 2018 ident: 10.1016/j.jcis.2019.12.091_b0215 article-title: TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity publication-title: J. Catal. doi: 10.1016/j.jcat.2018.03.009 – volume: 7 start-page: 9726 year: 2019 ident: 10.1016/j.jcis.2019.12.091_b0065 article-title: Chainmail co-catalyst of NiO shell-encapsulated Ni for improving photocatalytic CO2 reduction over g-C3N4 publication-title: J. Mater. Chem. A. doi: 10.1039/C9TA01061K – ident: 10.1016/j.jcis.2019.12.091_b0085 doi: 10.1016/j.jcis.2019.01.005 – volume: 211 start-page: 1 year: 2017 ident: 10.1016/j.jcis.2019.12.091_b0155 article-title: Enhanced photocatalytic conversion of greenhouse gas CO2 into solar fuels over g-C3N4 nanotubes with decorated transparent ZIF-8 nanoclusters publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.04.009 – volume: 209 start-page: 228 year: 2017 ident: 10.1016/j.jcis.2019.12.091_b0055 article-title: AuPd/3DOM-TiO2 catalysts for photocatalytic reduction of CO2: high efficient separation of photogenerated charge carriers publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.02.076 – volume: 352 start-page: 532 year: 2017 ident: 10.1016/j.jcis.2019.12.091_b0105 article-title: A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance publication-title: J. Catal. doi: 10.1016/j.jcat.2017.06.006 – volume: 34 start-page: 63 year: 2019 ident: 10.1016/j.jcis.2019.12.091_b0010 article-title: Photocatalytic conversion of carbon dioxide: from products to design the catalysts publication-title: J. CO2 Utilizat. doi: 10.1016/j.jcou.2019.05.032 – volume: 218 start-page: 664 year: 2017 ident: 10.1016/j.jcis.2019.12.091_b0290 article-title: P-doped tubular g-C3N4 with surface carbon defects: universal synthesis and enhanced visible-light photocatalytic hydrogen production publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.07.022 – volume: 8 start-page: 76 year: 2009 ident: 10.1016/j.jcis.2019.12.091_b0230 article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light publication-title: Nat. Mater. doi: 10.1038/nmat2317 – volume: 548 start-page: 197 year: 2019 ident: 10.1016/j.jcis.2019.12.091_b0095 article-title: Synthesis and optimization of the trimesic acid modified polymeric carbon nitride for enhanced photocatalytic reduction of CO2 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.04.037 – volume: 30 start-page: 1804282 year: 2018 ident: 10.1016/j.jcis.2019.12.091_b0305 article-title: Synthesis of particulate hierarchical tandem heterojunctions toward optimized photocatalytic hydrogen production publication-title: Adv. Mater. doi: 10.1002/adma.201804282 – volume: 1 start-page: 589 year: 2016 ident: 10.1016/j.jcis.2019.12.091_b0185 article-title: Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00247 – volume: 140 start-page: 1760 year: 2018 ident: 10.1016/j.jcis.2019.12.091_b0330 article-title: Oxygen-vacancy-mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10997 – volume: 11 start-page: 6174 year: 2019 ident: 10.1016/j.jcis.2019.12.091_b0130 article-title: Direct Z-scheme g-C3N4/FeWO4 nanocomposite for enhanced and selective photocatalytic CO2 reduction under visible light publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b22434 – volume: 308 start-page: 248 year: 2017 ident: 10.1016/j.jcis.2019.12.091_b0245 article-title: Photocatalytic reduction of CO2 with H2O over graphene oxide-supported oxygen-rich TiO2 hybrid photocatalyst under visible light irradiation: process and kinetic studies publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.09.050 – volume: 300 start-page: 160 year: 2018 ident: 10.1016/j.jcis.2019.12.091_b0035 article-title: g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction publication-title: Catal. Today doi: 10.1016/j.cattod.2017.05.033 – volume: 6 start-page: 16882 year: 2018 ident: 10.1016/j.jcis.2019.12.091_b0190 article-title: Vertically aligned MoS2 on Ti3C2 (MXene) as an improved HER catalyst publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05033C – volume: 118 start-page: 20982 year: 2014 ident: 10.1016/j.jcis.2019.12.091_b0315 article-title: Adjustment and control of energy levels for TiO2–N/ZrO2– xNx with enhanced visible light photocatalytic activity publication-title: J. Phys. Chem. C. doi: 10.1021/jp505921s – volume: 254 start-page: 270 year: 2019 ident: 10.1016/j.jcis.2019.12.091_b0075 article-title: Insights into photocatalytic CO2 reduction on C3N4: strategy of simultaneous B K co-doping and enhancement by N vacancies publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.05.002 – volume: 5 start-page: 12899 year: 2017 ident: 10.1016/j.jcis.2019.12.091_b0210 article-title: Ti2CO2 MXene: a highly active and selective photocatalyst for CO2 reduction publication-title: J. Mater. Chem. A. doi: 10.1039/C7TA03557H – volume: 16 start-page: 5547 year: 2016 ident: 10.1016/j.jcis.2019.12.091_b0300 article-title: Construction and nanoscale detection of interfacial charge transfer of elegant Z-scheme WO3/Au/In2S3 nanowire arrays publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b02094 – volume: 239 start-page: 586 year: 2018 ident: 10.1016/j.jcis.2019.12.091_b0125 article-title: Construction of Bi2WO6/RGO/g-C3N4 2D/2D/2D hybrid Z-scheme heterojunctions with large interfacial contact area for efficient charge separation and high-performance photoreduction of CO2 and H2O into solar fuels publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.08.056 – volume: 7 start-page: 1602725 year: 2017 ident: 10.1016/j.jcis.2019.12.091_b0275 article-title: Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602725 – volume: 138 start-page: 6292 year: 2016 ident: 10.1016/j.jcis.2019.12.091_b0140 article-title: Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02692 – volume: 245 start-page: 87 year: 2019 ident: 10.1016/j.jcis.2019.12.091_b0265 article-title: Boron nitride quantum dots decorated ultrathin porous g-C3N4: intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.12.049 – volume: 21 start-page: 15171 year: 2011 ident: 10.1016/j.jcis.2019.12.091_b0280 article-title: Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts publication-title: J. Mater. Chem. doi: 10.1039/c1jm12844b – volume: 147 start-page: 385 year: 2019 ident: 10.1016/j.jcis.2019.12.091_b0025 article-title: Self-assembled reduced graphene oxide-TiO2 nanocomposites: synthesis, DFTB+ calculations, and enhanced photocatalytic reduction of CO2 to methanol publication-title: Carbon doi: 10.1016/j.carbon.2019.03.019 – volume: 463 start-page: 456 year: 2019 ident: 10.1016/j.jcis.2019.12.091_b0040 article-title: Enhanced CO2 photocatalytic reduction performance on alkali and alkaline earth metal ion-exchanged hydrogen titanate nanotubes publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.08.245 |
SSID | ssj0011559 |
Score | 2.6627584 |
Snippet | [Display omitted]
Photocatalytic reduction of carbon dioxide (CO2) under visible light irradiation for producing high-value fuel has attracted tremendous... Photocatalytic reduction of carbon dioxide (CO2) under visible light irradiation for producing high-value fuel has attracted tremendous attention in recent... Photocatalytic reduction of carbon dioxide (CO₂) under visible light irradiation for producing high-value fuel has attracted tremendous attention in recent... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 406 |
SubjectTerms | adsorption Alkalized Ti3C2 carbon dioxide carbon monoxide carbon nitride catalysts electrical conductivity fuels g-C3N4 graphene irradiation light mixing MXenes nitrogen photocatalysis Photocatalytic CO2 reduction titanium |
Title | Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance |
URI | https://dx.doi.org/10.1016/j.jcis.2019.12.091 https://www.proquest.com/docview/2336245514 https://www.proquest.com/docview/2400525336 |
Volume | 564 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07bxQxELaiUAAFggAiPCIj0SGT9ftcRgvRAcrRJNJ11pzthQvR3Sq6FKTIb2dmH-EhcQXt7lhezXhnvnmasTdeA_pcBkTO3gpTCggIPglEr9DkZAEsNSefzNz0zHya2_kOq8deGCqrHHR_r9M7bT08ORy4edgul9Tji3-bDx4hCBrFCTXxGePplL-7uS3zkJR268s8pCDqoXGmr_E6T0sa2S1DFxIM8l_G6S813dme44fswQAa-VH_XY_YTlntsbv1eFfbHrv_21jBxyy_J58SqKCZfxW1nhlO4VYOF9-BGiGvS-anS10rfjJHVccRt_K2K8vDF-239WbdBXV-4G68_qL4JY13JQHy9lebwRN2dvzhtJ6K4TYFkbRzGzGxVrvsmgqgUmBk4wNKBb210CxUBgQ6OgOyMttiGyWTdC75kMykUtkll_VTtrtar8ozxo0PFlzVZElJukUVmlyQzapKAbF61vtMjmyMaRg1TjdeXMSxpuw8EusjsT5KFZH1--zt7Zq2H7SxldqO0ol_HJeIlmDrutejKCOKiJIjsCrrKyTSaMoN4cctNIai6AiQ3fP_3P8Fu6fIYa-0UOol291cXpVXiGo2i4Pu2B6wO0cfP09nPwGtHPXg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKORQOCAqIlpeRuCHT9XPjI1qoAjThkkq5WRPbW1KqZFWlh3LgtzOzj_KQyIHr7li7mrFnvhnPg7HXpQb0uQyIlEorTM4gwJdRIHqFOkULYKk4eTJ141PzaW7nO6waamEorbLX_Z1Ob7V1_-So5-ZRs1xSjS-ettKXCEHQKI78LXbb4PGlMQZvf9zkeUi6d-vyPKQg8r5ypkvyOo9L6tktfRsT9PJf1ukvPd0an-P77F6PGvm77scesJ282md71TCsbZ_d_a2v4EOW3pNTCZTRzM9EpaeGU7yVw8U3oErI7znx2VJXik_mqOs4AlfetHl5-KL5ut6s26jONX6NV18Uv6T-riRB3vyqM3jETo8_zKqx6McpiKid24iRtdolVxcAhQIj69KjWNBd8_VCJUCkoxMgL5PNtlYySudi6aMZFSq56JJ-zHZX61V-wrgpvQVX1EnSLd2i8HXKyGZVRI9gPekDJgc2htj3GqeRFxdhSCo7D8T6QKwPUgVk_QF7c7Om6TptbKW2g3TCH_sloCnYuu7VIMqAIqLbEVjl9RUSabTlhgDkFhpDYXREyO7wP7__ku2NZ5OTcPJx-vkpu6PIey-0UOoZ291cXuXnCHE2ixftFv4JSsH3bg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decorating+g-C3N4+with+alkalinized+Ti3C2+MXene+for+promoted+photocatalytic+CO2+reduction+performance&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Tang%2C+Qijun&rft.au=Sun%2C+Zhuxing&rft.au=Deng%2C+Shuang&rft.au=Wang%2C+Haiqiang&rft.date=2020-03-22&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=564&rft.spage=406&rft_id=info:doi/10.1016%2Fj.jcis.2019.12.091&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |