Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance

[Display omitted] Photocatalytic reduction of carbon dioxide (CO2) under visible light irradiation for producing high-value fuel has attracted tremendous attention in recent years. In this study, titanium carbide MXene (Ti3C2) was used as a noble metal-free co-catalyst by simply mixing graphitic car...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 564; pp. 406 - 417
Main Authors Tang, Qijun, Sun, Zhuxing, Deng, Shuang, Wang, Haiqiang, Wu, Zhongbiao
Format Journal Article
LanguageEnglish
Published Elsevier Inc 22.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Photocatalytic reduction of carbon dioxide (CO2) under visible light irradiation for producing high-value fuel has attracted tremendous attention in recent years. In this study, titanium carbide MXene (Ti3C2) was used as a noble metal-free co-catalyst by simply mixing graphitic carbon nitride (g-C3N4) and alkalized Ti3C2. The carbon monoxide evolution rate of the optimized composite (5%TCOH-CN) from photocatalytic reduction of CO2 was 5.9 times higher than that of pure g-C3N4. Alkalized Ti3C2 was responsible for the superior photocatalytic activity due to its excellent electrical conductivity and large CO2 adsorption capacity. Furthermore, the separation of the photo-induced electron–hole pairs was greatly enhanced because of the large Fermi level difference between alkalized Ti3C2 and pure g-C3N4. This work demonstrates the potential of MXenes as noble metal-free co-catalyst for photocatalysis processes such as carbon dioxide reduction reaction and nitrogen reduction reaction.
AbstractList [Display omitted] Photocatalytic reduction of carbon dioxide (CO2) under visible light irradiation for producing high-value fuel has attracted tremendous attention in recent years. In this study, titanium carbide MXene (Ti3C2) was used as a noble metal-free co-catalyst by simply mixing graphitic carbon nitride (g-C3N4) and alkalized Ti3C2. The carbon monoxide evolution rate of the optimized composite (5%TCOH-CN) from photocatalytic reduction of CO2 was 5.9 times higher than that of pure g-C3N4. Alkalized Ti3C2 was responsible for the superior photocatalytic activity due to its excellent electrical conductivity and large CO2 adsorption capacity. Furthermore, the separation of the photo-induced electron–hole pairs was greatly enhanced because of the large Fermi level difference between alkalized Ti3C2 and pure g-C3N4. This work demonstrates the potential of MXenes as noble metal-free co-catalyst for photocatalysis processes such as carbon dioxide reduction reaction and nitrogen reduction reaction.
Photocatalytic reduction of carbon dioxide (CO₂) under visible light irradiation for producing high-value fuel has attracted tremendous attention in recent years. In this study, titanium carbide MXene (Ti₃C₂) was used as a noble metal-free co-catalyst by simply mixing graphitic carbon nitride (g-C₃N₄) and alkalized Ti₃C₂. The carbon monoxide evolution rate of the optimized composite (5%TCOH-CN) from photocatalytic reduction of CO₂ was 5.9 times higher than that of pure g-C₃N₄. Alkalized Ti₃C₂ was responsible for the superior photocatalytic activity due to its excellent electrical conductivity and large CO₂ adsorption capacity. Furthermore, the separation of the photo-induced electron–hole pairs was greatly enhanced because of the large Fermi level difference between alkalized Ti₃C₂ and pure g-C₃N₄. This work demonstrates the potential of MXenes as noble metal-free co-catalyst for photocatalysis processes such as carbon dioxide reduction reaction and nitrogen reduction reaction.
Photocatalytic reduction of carbon dioxide (CO2) under visible light irradiation for producing high-value fuel has attracted tremendous attention in recent years. In this study, titanium carbide MXene (Ti3C2) was used as a noble metal-free co-catalyst by simply mixing graphitic carbon nitride (g-C3N4) and alkalized Ti3C2. The carbon monoxide evolution rate of the optimized composite (5%TCOH-CN) from photocatalytic reduction of CO2 was 5.9 times higher than that of pure g-C3N4. Alkalized Ti3C2 was responsible for the superior photocatalytic activity due to its excellent electrical conductivity and large CO2 adsorption capacity. Furthermore, the separation of the photo-induced electron-hole pairs was greatly enhanced because of the large Fermi level difference between alkalized Ti3C2 and pure g-C3N4. This work demonstrates the potential of MXenes as noble metal-free co-catalyst for photocatalysis processes such as carbon dioxide reduction reaction and nitrogen reduction reaction.Photocatalytic reduction of carbon dioxide (CO2) under visible light irradiation for producing high-value fuel has attracted tremendous attention in recent years. In this study, titanium carbide MXene (Ti3C2) was used as a noble metal-free co-catalyst by simply mixing graphitic carbon nitride (g-C3N4) and alkalized Ti3C2. The carbon monoxide evolution rate of the optimized composite (5%TCOH-CN) from photocatalytic reduction of CO2 was 5.9 times higher than that of pure g-C3N4. Alkalized Ti3C2 was responsible for the superior photocatalytic activity due to its excellent electrical conductivity and large CO2 adsorption capacity. Furthermore, the separation of the photo-induced electron-hole pairs was greatly enhanced because of the large Fermi level difference between alkalized Ti3C2 and pure g-C3N4. This work demonstrates the potential of MXenes as noble metal-free co-catalyst for photocatalysis processes such as carbon dioxide reduction reaction and nitrogen reduction reaction.
Author Tang, Qijun
Wang, Haiqiang
Wu, Zhongbiao
Sun, Zhuxing
Deng, Shuang
Author_xml – sequence: 1
  givenname: Qijun
  surname: Tang
  fullname: Tang, Qijun
  organization: Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University, Hangzhou 310058, PR China
– sequence: 2
  givenname: Zhuxing
  surname: Sun
  fullname: Sun, Zhuxing
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
– sequence: 3
  givenname: Shuang
  surname: Deng
  fullname: Deng, Shuang
  organization: Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
– sequence: 4
  givenname: Haiqiang
  surname: Wang
  fullname: Wang, Haiqiang
  email: haiqiangwang@zju.edu.cn
  organization: Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University, Hangzhou 310058, PR China
– sequence: 5
  givenname: Zhongbiao
  surname: Wu
  fullname: Wu, Zhongbiao
  organization: Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University, Hangzhou 310058, PR China
BookMark eNqFkT1PHDEQhq2ISBwkf4DKZZpdPPbae5bSoIV8SAQakOgsx54FX_bWh-0jgl-PT0eVglRTzPOMZuY9IgdznJGQE2AtMFCnq3blQm45A90Cb5mGD2QBTMumByYOyIIxDo3udX9IjnJeMQYgpV4Qf44uJlvCfE_vm0FcdfRvKA_UTn_sFObwgp7eBDFw-usOZ6RjTHST4jqW2tg8xBKdLXZ6LsHR4ZrThH7rSogz3WCq8NrODj-Rj6OdMn5-q8fk9tvFzfCjubz-_nM4u2ycUKo0SymF8mpk1jJuOxh7bevK0OvxN_cWuBTeagFeohw5OFDK9dp1S8a9csqLY_JlP7du-LjFXMw6ZIfTZGeM22x4x5isU4T6P1oh3kkJXUWXe9SlmHPC0bhQ7O7GkmyYDDCzy8CszC4Ds8vAADc1g6ryf9RNCmubnt-Xvu4lrK96CphMdgHrG31I6IrxMbynvwLhAKF0
CitedBy_id crossref_primary_10_1016_j_jallcom_2022_165933
crossref_primary_10_1002_adma_202301850
crossref_primary_10_1007_s10098_024_03093_6
crossref_primary_10_3866_PKU_WHXB202407002
crossref_primary_10_1016_j_colsurfa_2022_129315
crossref_primary_10_1016_j_jmst_2021_10_029
crossref_primary_10_1016_j_pmatsci_2024_101386
crossref_primary_10_1039_D2RA08324H
crossref_primary_10_1002_adfm_202311609
crossref_primary_10_1016_j_memsci_2024_122524
crossref_primary_10_1016_j_materresbull_2023_112536
crossref_primary_10_1016_j_nanoms_2023_02_003
crossref_primary_10_1016_j_matre_2022_100081
crossref_primary_10_1002_solr_202300691
crossref_primary_10_1016_j_colsurfa_2024_134101
crossref_primary_10_1016_j_flatc_2021_100252
crossref_primary_10_1016_j_jcis_2020_10_065
crossref_primary_10_1016_j_jcis_2021_12_196
crossref_primary_10_1016_j_jcis_2022_04_003
crossref_primary_10_1002_smm2_1238
crossref_primary_10_1002_admi_202200771
crossref_primary_10_1016_j_jallcom_2021_160757
crossref_primary_10_1021_acsnano_2c04750
crossref_primary_10_1016_j_nanoen_2021_106532
crossref_primary_10_1016_j_apcatb_2024_125017
crossref_primary_10_2139_ssrn_4054572
crossref_primary_10_1007_s42114_024_01026_x
crossref_primary_10_1016_j_carbon_2024_119537
crossref_primary_10_1016_j_jcou_2021_101814
crossref_primary_10_1007_s11356_023_26003_7
crossref_primary_10_1021_acsanm_2c04067
crossref_primary_10_1016_j_colsurfa_2022_128358
crossref_primary_10_1016_j_jcou_2021_101817
crossref_primary_10_1016_j_jece_2025_115694
crossref_primary_10_1016_j_ccr_2022_214965
crossref_primary_10_1039_D1EE03211A
crossref_primary_10_1016_S1872_5805_23_60722_X
crossref_primary_10_1016_j_jhazmat_2023_132531
crossref_primary_10_1039_D3NR00242J
crossref_primary_10_1016_j_jcis_2022_01_130
crossref_primary_10_1016_j_matpr_2022_06_445
crossref_primary_10_1016_j_jcis_2021_02_105
crossref_primary_10_1039_D2TA01140A
crossref_primary_10_1002_ente_202400136
crossref_primary_10_1016_j_jallcom_2022_166908
crossref_primary_10_1016_j_seppur_2023_124528
crossref_primary_10_1021_acs_energyfuels_3c01301
crossref_primary_10_1021_acssuschemeng_1c01155
crossref_primary_10_1016_j_chemosphere_2021_132923
crossref_primary_10_1016_j_jcou_2021_101806
crossref_primary_10_1016_j_cej_2021_130340
crossref_primary_10_1021_acsami_0c18391
crossref_primary_10_1016_j_cej_2022_137028
crossref_primary_10_1016_j_jhazmat_2022_130165
crossref_primary_10_1002_admi_202202172
crossref_primary_10_1016_j_apcatb_2021_120546
crossref_primary_10_1016_j_ceja_2024_100593
crossref_primary_10_1016_j_jcis_2022_05_064
crossref_primary_10_1039_D2CY00085G
crossref_primary_10_1016_j_mssp_2022_106569
crossref_primary_10_1016_j_jcis_2020_08_047
crossref_primary_10_1039_D0TC02979C
crossref_primary_10_1007_s12209_022_00328_9
crossref_primary_10_1016_j_jece_2021_106642
crossref_primary_10_1080_03067319_2023_2223127
crossref_primary_10_1016_j_ijhydene_2021_01_096
crossref_primary_10_1039_D1CY01096D
crossref_primary_10_1016_j_ccr_2023_215094
crossref_primary_10_2139_ssrn_4073642
crossref_primary_10_1039_D1NR02224E
crossref_primary_10_1016_j_apcatb_2023_123585
crossref_primary_10_1016_j_cej_2020_128099
crossref_primary_10_1016_j_jpap_2021_100048
crossref_primary_10_1002_ente_202301520
crossref_primary_10_1016_j_jcis_2021_06_169
crossref_primary_10_1021_acs_energyfuels_3c01887
crossref_primary_10_1039_D2NJ04502H
crossref_primary_10_1007_s41061_023_00420_1
crossref_primary_10_1021_acsami_0c12905
crossref_primary_10_1039_D1CY00803J
crossref_primary_10_1016_j_mtener_2022_101065
crossref_primary_10_1016_j_jece_2020_104631
crossref_primary_10_1021_acs_energyfuels_3c05215
crossref_primary_10_2139_ssrn_4073612
crossref_primary_10_1016_j_seppur_2023_124667
crossref_primary_10_1021_acsami_0c04730
crossref_primary_10_1016_j_apcatb_2021_120440
crossref_primary_10_1016_j_molliq_2021_117820
crossref_primary_10_1016_j_seppur_2022_122875
crossref_primary_10_3390_pr11051413
crossref_primary_10_1007_s11814_024_00029_0
crossref_primary_10_1039_D1TC06029E
crossref_primary_10_1051_e3sconf_202125202068
crossref_primary_10_1016_j_fuel_2024_131816
crossref_primary_10_1016_j_jcis_2022_04_035
crossref_primary_10_1016_j_molstruc_2024_138281
crossref_primary_10_1002_ece2_60
crossref_primary_10_1016_j_apsusc_2021_149031
crossref_primary_10_1039_D3SE01419C
crossref_primary_10_1016_j_mtcata_2024_100054
crossref_primary_10_1039_D2TA09140B
crossref_primary_10_1016_j_jcis_2022_03_137
crossref_primary_10_2139_ssrn_4125799
crossref_primary_10_1016_j_mssp_2023_107645
crossref_primary_10_1016_j_jcis_2024_01_005
crossref_primary_10_1002_smll_202408331
crossref_primary_10_1039_D0CY02156C
crossref_primary_10_1021_acs_energyfuels_0c02637
crossref_primary_10_3390_catal13040715
crossref_primary_10_1016_j_jmst_2024_09_044
crossref_primary_10_1016_j_jcou_2020_101270
crossref_primary_10_2139_ssrn_4048798
crossref_primary_10_1016_j_cej_2020_125868
crossref_primary_10_1016_j_nanoms_2024_04_002
crossref_primary_10_1039_D2NR05718B
crossref_primary_10_1016_j_apsusc_2022_153848
crossref_primary_10_1016_j_jmst_2021_08_019
crossref_primary_10_1016_j_apcatb_2023_123429
crossref_primary_10_1016_j_molliq_2021_117937
crossref_primary_10_1016_j_colsurfa_2022_129392
crossref_primary_10_1088_1361_6528_ad7e2f
crossref_primary_10_1016_S1872_2067_22_64110_X
crossref_primary_10_1039_D1TA10514K
crossref_primary_10_1016_j_jcis_2021_07_064
crossref_primary_10_1016_j_jechem_2022_09_046
crossref_primary_10_1016_j_jece_2024_113265
crossref_primary_10_1016_j_xcrp_2021_100371
crossref_primary_10_1016_j_jwpe_2024_106857
crossref_primary_10_1016_j_jclepro_2021_129647
crossref_primary_10_1016_j_cej_2020_127838
crossref_primary_10_1016_j_jallcom_2024_176557
crossref_primary_10_1016_j_jece_2021_105244
crossref_primary_10_1007_s11356_021_17366_w
crossref_primary_10_1002_cnma_202400466
crossref_primary_10_1016_j_jcis_2021_05_164
crossref_primary_10_1016_j_jmst_2020_02_037
crossref_primary_10_1016_j_cej_2021_129296
crossref_primary_10_1016_j_ccr_2022_214440
crossref_primary_10_1021_acsnano_0c05482
crossref_primary_10_1016_j_jtice_2023_104737
crossref_primary_10_1021_acsanm_4c04400
crossref_primary_10_1039_D3SE00516J
crossref_primary_10_1016_j_chemosphere_2024_143054
crossref_primary_10_1016_j_cej_2024_157124
crossref_primary_10_1016_j_jcis_2023_04_015
crossref_primary_10_1007_s12598_024_02746_1
crossref_primary_10_1016_j_jcis_2022_12_063
crossref_primary_10_26599_NR_2025_94907054
crossref_primary_10_1016_j_scitotenv_2024_172816
crossref_primary_10_1016_j_jechem_2023_03_034
crossref_primary_10_1016_j_seppur_2023_125325
crossref_primary_10_1002_chem_202000708
crossref_primary_10_1016_j_jcis_2024_03_139
crossref_primary_10_1016_j_cej_2021_130502
crossref_primary_10_1016_j_envres_2024_120698
crossref_primary_10_1021_acs_energyfuels_0c01354
crossref_primary_10_1016_j_ccr_2022_214794
crossref_primary_10_1039_D1CY00716E
crossref_primary_10_1039_D4SE00405A
crossref_primary_10_1016_j_enchem_2021_100051
crossref_primary_10_3866_PKU_WHXB202306048
crossref_primary_10_1016_j_matdes_2023_112046
crossref_primary_10_1007_s00604_022_05349_8
crossref_primary_10_1016_j_susmat_2022_e00439
crossref_primary_10_1088_1361_6528_adad7c
crossref_primary_10_1016_j_mtsust_2023_100350
crossref_primary_10_1016_j_jcis_2023_10_154
crossref_primary_10_1016_j_jallcom_2024_173730
crossref_primary_10_1016_j_mattod_2020_10_025
crossref_primary_10_1007_s11356_024_34382_8
crossref_primary_10_1039_D4NJ00296B
crossref_primary_10_1016_j_jmst_2022_09_037
crossref_primary_10_1016_j_jcou_2022_102238
crossref_primary_10_1016_j_mtener_2020_100521
crossref_primary_10_1021_acs_iecr_2c03536
crossref_primary_10_1021_acsaem_1c01406
crossref_primary_10_1039_D0MA00938E
crossref_primary_10_1002_chem_202400496
crossref_primary_10_1021_acsanm_1c03112
crossref_primary_10_1016_j_ceramint_2020_06_232
crossref_primary_10_1016_j_cjche_2023_02_028
crossref_primary_10_1016_j_psep_2024_03_050
crossref_primary_10_1016_j_mseb_2024_117953
crossref_primary_10_1088_2053_1583_ac9e66
crossref_primary_10_1016_j_energy_2024_133231
crossref_primary_10_1007_s12274_022_4629_3
crossref_primary_10_1016_j_carbon_2023_118345
crossref_primary_10_1007_s43939_024_00081_x
crossref_primary_10_1002_asia_202400781
crossref_primary_10_1039_D3TA06548K
crossref_primary_10_1007_s42823_023_00634_9
crossref_primary_10_1016_j_jcis_2024_05_190
crossref_primary_10_1021_acs_langmuir_3c01064
crossref_primary_10_3390_chemistry5010036
crossref_primary_10_1016_j_apsusc_2022_154319
crossref_primary_10_1002_er_7667
crossref_primary_10_1016_j_gee_2020_11_008
crossref_primary_10_1039_D2NJ02964B
crossref_primary_10_1016_j_fuel_2023_127445
crossref_primary_10_1016_j_jcis_2021_07_113
crossref_primary_10_1021_acs_jpcc_3c06353
crossref_primary_10_1039_D1GC01303C
crossref_primary_10_1021_acssuschemeng_4c02435
crossref_primary_10_1039_D1QI00722J
crossref_primary_10_1039_D1TA02527A
crossref_primary_10_1016_j_cplett_2024_141818
crossref_primary_10_1016_j_carbon_2024_119758
crossref_primary_10_1021_acs_energyfuels_3c01333
crossref_primary_10_1002_solr_202100603
crossref_primary_10_1016_j_cej_2021_131402
crossref_primary_10_1039_D2TA08983A
crossref_primary_10_1016_j_jcis_2021_01_099
crossref_primary_10_1016_j_cherd_2021_11_006
crossref_primary_10_1016_j_jcis_2021_10_034
crossref_primary_10_1016_j_apcatb_2020_119239
crossref_primary_10_1016_j_ccr_2024_215752
crossref_primary_10_3390_molecules28083292
crossref_primary_10_1007_s42765_021_00122_7
crossref_primary_10_1002_sstr_202200104
crossref_primary_10_1016_j_ccr_2025_216460
crossref_primary_10_1007_s10854_023_09913_7
crossref_primary_10_1016_j_mssp_2022_106517
crossref_primary_10_1080_10643389_2022_2101857
crossref_primary_10_1016_S1872_2067_22_64102_0
crossref_primary_10_1021_acs_energyfuels_1c00958
crossref_primary_10_1016_j_jallcom_2021_159266
Cites_doi 10.1039/C8TA10410G
10.1039/C4MH00040D
10.1021/acsami.5b09901
10.1002/anie.201207199
10.1021/es5046309
10.1021/cr068357u
10.1016/j.apcatb.2017.05.064
10.1021/jacs.9b02997
10.1021/acssuschemeng.8b03965
10.1007/s12274-014-0514-z
10.1039/C7TA10404A
10.1021/jacs.6b10834
10.1016/j.apsusc.2018.01.071
10.1039/C8TA11475G
10.1002/adsu.201700003
10.1016/j.apsusc.2014.07.153
10.1016/j.enpol.2012.06.007
10.1016/j.apcatb.2012.12.024
10.1002/cctc.201402195
10.1021/acs.jpclett.9b00736
10.1002/adfm.201800136
10.1039/c1jm12620b
10.1021/acs.chemrev.8b00400
10.1016/j.nanoen.2017.12.003
10.1021/acs.chemmater.7b02847
10.1039/C8TA09302D
10.1002/adma.201704649
10.1021/acs.langmuir.8b03456
10.1016/j.jcis.2015.11.022
10.1016/j.apsusc.2018.01.193
10.1016/j.apcatb.2019.117771
10.1016/j.jcou.2016.04.006
10.1002/adma.201102306
10.1021/jacs.6b12273
10.1021/acsami.5b10613
10.1016/j.cej.2019.121939
10.1002/smll.201603938
10.1002/cssc.201800083
10.1016/j.jcat.2018.03.009
10.1039/C9TA01061K
10.1016/j.jcis.2019.01.005
10.1016/j.apcatb.2017.04.009
10.1016/j.apcatb.2017.02.076
10.1016/j.jcat.2017.06.006
10.1016/j.jcou.2019.05.032
10.1016/j.apcatb.2017.07.022
10.1038/nmat2317
10.1016/j.jcis.2019.04.037
10.1002/adma.201804282
10.1021/acsenergylett.6b00247
10.1021/jacs.7b10997
10.1021/acsami.8b22434
10.1016/j.cej.2016.09.050
10.1016/j.cattod.2017.05.033
10.1039/C8TA05033C
10.1021/jp505921s
10.1016/j.apcatb.2019.05.002
10.1039/C7TA03557H
10.1021/acs.nanolett.6b02094
10.1016/j.apcatb.2018.08.056
10.1002/aenm.201602725
10.1021/jacs.6b02692
10.1016/j.apcatb.2018.12.049
10.1039/c1jm12844b
10.1016/j.carbon.2019.03.019
10.1016/j.apsusc.2018.08.245
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jcis.2019.12.091
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 417
ExternalDocumentID 10_1016_j_jcis_2019_12_091
S0021979719315589
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
RIG
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
7X8
7S9
L.6
ID FETCH-LOGICAL-c366t-85536d6f0aa02a41f79a979179fb2da1253da931d5e5f21c166c79c4802d6c6d3
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Jul 11 04:33:42 EDT 2025
Thu Jul 10 19:28:57 EDT 2025
Thu Apr 24 22:59:37 EDT 2025
Tue Jul 01 01:18:49 EDT 2025
Fri Feb 23 02:48:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords g-C3N4
Alkalized Ti3C2
Photocatalytic CO2 reduction
MXenes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c366t-85536d6f0aa02a41f79a979179fb2da1253da931d5e5f21c166c79c4802d6c6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2336245514
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2400525336
proquest_miscellaneous_2336245514
crossref_citationtrail_10_1016_j_jcis_2019_12_091
crossref_primary_10_1016_j_jcis_2019_12_091
elsevier_sciencedirect_doi_10_1016_j_jcis_2019_12_091
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-22
PublicationDateYYYYMMDD 2020-03-22
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-22
  day: 22
PublicationDecade 2020
PublicationTitle Journal of colloid and interface science
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Liu, Xiao, Goddard (b0325) 2016; 138
Liu, Chen, Li, Peng, Xiong (b0155) 2017; 211
Sun, Wang, Li, Lyu, Butburee, Luo, Wang, Fischer, Zhang, Wu, Wang (b0165) 2017; 1
Dong, Wu, Sun, Fu, Wu, Lee (b0280) 2011; 21
Shen, Zhang, Wang, Tian, Jin, Guo, Wang, Shi (b0295) 2019; 7
Wang, Xu, Chen, Zeng, Zhang, Zhou, Yang, Huang, Lai, Cheng, Hu, Xiong, Guo, Zhou (b0270) 2018
Khatib (b0005) 2012; 48
Gao, Jiao, Waclawik, Du (b0140) 2016; 138
Li, Gao, Zhou, Fan, Han, Xu, Wang, Xiao, Li, Zou (b0300) 2016; 16
Ye, Wang, Liu, Ye, Wang (b0225) 2018; 11
Wang, Maeda, Thomas, Takanabe, Xin, Carlsson, Domen, Antonietti (b0230) 2009; 8
Cheng, Li, Zhang, Xiang (b0180) 2019; 10
Yu, Yin, Wang, Zhang (b0200) 2019; 35
Yang, Wu, Xiao, Tang, Shen, Li, Zhou, Zou (b0310) 2019; 255
Wang, Fu, Zheng (b0075) 2019; 254
Wang, Yong, Chen, Jiang, Zhang, Shao, Zhang, Yan, Pan, Xie (b0330) 2018; 140
Di, Zhu, Cheng, Yu, Xu (b0105) 2017; 352
Liu, Zhang, Wang, Dawson, Chen (b0260) 2011; 21
Seh, Fredrickson, Anasori, Kibsgaard, Strickler, Lukatskaya, Gogotsi, Jaramillo, Vojvodic (b0185) 2016; 1
He, Zhang, Teng, Fan (b0100) 2015; 49
Li, Yuan, Lin, Yang, Xu, Du, Xie, Lin, Sun (b0275) 2017; 7
Yu, Zhou, Wang, Zhao, Qiu (b0195) 2018; 44
Cao, Shen, Tong, Fu, Yu (b0220) 2018; 28
Hayat, Khan, Rahman, Mane, Khan, Sohail, Rahman, Shaishta, Chi, Wu (b0095) 2019; 548
Sun, Fischer, Li, Hu, Tang, Wang, Wu, Hankel, Searles, Wang (b0170) 2017; 216
Fu, Yang, Liu, Chen, Yao, Xie, Zhong, Wang, Li, Li, Zeng (b0010) 2019; 34
Lee, Liao, Tsai, Huang, Wu (b0240) 2013; 132–133
Han, Zhang, Ye, Wang, Ma, Su, Xie, Zhou, Wong, Ye (b0065) 2019; 7
Alhabeb, Maleski, Anasori, Lelyukh, Clark, Sin, Gogotsi (b0255) 2017; 29
Yang, Zhang, Huang, Zeng, Huang, Lai, Zhou, Wang, Guo, Xue, Deng, Cheng, Xiong (b0265) 2019; 245
Guo, Tang, Xie, Tian, Feng, Zhou, Jiang (b0290) 2017; 218
Fu, Zhu, Jiang, Cheng, You, Yu (b0070) 2017; 13
Low, Zhang, Tong, Shen, Yu (b0215) 2018; 361
Nie, Zhang, Fu, Cheng, Yu (b0115) 2018; 441
Sun, Wang, Wu, Wang (b0035) 2018; 300
Ran, Jaroniec, Qiao (b0020) 2018; 30
Sun, Yang, Liu, Wang, Wu (b0250) 2014; 315
Sun, Zhou, Li, Ren, Qiao, Li, Fu (b0305) 2018; 30
Tang, Sun, Wang, Li, Wang, Wu (b0040) 2019; 463
Attanayake, Abeyweera, Thenuwara, Anasori, Gogotsi, Sun, Strongin (b0190) 2018; 6
Jo, Kumar, Eslava, Tonda (b0125) 2018; 239
Tan, Ong, Chai, Mohamed (b0245) 2017; 308
Jiao, Wei, Zhao, Zhao, Duan, Liu, Pang, Li, Jiang, Wang (b0055) 2017; 209
Jiang, Wan, Li, Yuan, Zhao, Wong (b0110) 2018; 9
Li, Gao, Xiong, Liao, Shih (b0135) 2018; 439
Habisreutinger, Schmidt-Mende, Stolarczyk (b0060) 2013; 52
Butburee, Kotchasarn, Hirunsit, Sun, Tang, Khemthong, Sangkhun, Thongsuwan, Kumnorkaew, Wang, Faungnawakij (b0050) 2019; 7
N.T. Thanh Truc, L. Giang Bach, N. Thi Hanh, T.-D. Pham, N. Thi Phuong Le Chi, D.T. Tran, M.V. Nguyen, V.N. Nguyen, The superior photocatalytic activity of Nb doped TiO2/g-C3N4 direct Z-scheme system for efficient conversion of CO2 into valuable fuels, J. Colloid Interface Sci. 540 (2019) 1–8. Doi: 10.1016/j.jcis.2019.01.005.
Sakakura, Choi, Yasuda (b0145) 2007; 107
Zhang, Wang, Du, Wang, Ma, Yu (b0090) 2016; 464
Yu, Zhang, Kuang, Ding, Yao, Xu, Cao (b0315) 2014; 118
Bhosale, Jain, Vinod, Kumar, Ogale (b0130) 2019; 11
Fu, Li, Yun, Lee, Ryu, Kim (b0205) 2019; 375
Tan, Maroto-Valer (b0015) 2019; 7
Zhang, Zhang, Li, Zhao, Wu, Zhou (b0210) 2017; 5
Naguib, Kurtoglu, Presser, Lu, Niu, Heon, Hultman, Gogotsi, Barsoum (b0175) 2011; 23
Zhong, Sa, Li, He, Li, Bi, Zhuang, Yu, Zou (b0045) 2019; 141
Olowoyo, Kumar, Singh, Oninla, Babalola, Valdés, Vorontsov, Kumar (b0025) 2019; 147
Wang, Yao, Fan, Zhang, Wang, Zang, Li (b0120) 2016; 8
Li, Yu, Jaroniec, Chen (b0150) 2019
Xia, Yan, Wang, (David) Lou (b0285) 2014; 1
Li, Yu, Quan, Chen, Zhang (b0320) 2016; 8
Ong, Tan, Chai, Yong, Mohamed (b0235) 2014; 7
Wang, Sun, Li, Tang, Wu (b0030) 2016; 14
Rahman, Davey, Qiao (b0080) 2018; 6
Hong, Zhang, Wang, Zhou, Xu (b0160) 2014; 6
Wang, Chen, Yong, Zhang, Li, Shao, Sun, Pan, Xie (b0335) 2017; 139
Wang (10.1016/j.jcis.2019.12.091_b0075) 2019; 254
Wang (10.1016/j.jcis.2019.12.091_b0335) 2017; 139
Zhang (10.1016/j.jcis.2019.12.091_b0210) 2017; 5
Alhabeb (10.1016/j.jcis.2019.12.091_b0255) 2017; 29
Liu (10.1016/j.jcis.2019.12.091_b0155) 2017; 211
Wang (10.1016/j.jcis.2019.12.091_b0270) 2018
Wang (10.1016/j.jcis.2019.12.091_b0120) 2016; 8
Sun (10.1016/j.jcis.2019.12.091_b0165) 2017; 1
Ye (10.1016/j.jcis.2019.12.091_b0225) 2018; 11
Zhong (10.1016/j.jcis.2019.12.091_b0045) 2019; 141
Li (10.1016/j.jcis.2019.12.091_b0300) 2016; 16
Bhosale (10.1016/j.jcis.2019.12.091_b0130) 2019; 11
Sakakura (10.1016/j.jcis.2019.12.091_b0145) 2007; 107
Butburee (10.1016/j.jcis.2019.12.091_b0050) 2019; 7
Li (10.1016/j.jcis.2019.12.091_b0275) 2017; 7
Yu (10.1016/j.jcis.2019.12.091_b0315) 2014; 118
Sun (10.1016/j.jcis.2019.12.091_b0305) 2018; 30
Low (10.1016/j.jcis.2019.12.091_b0215) 2018; 361
Hayat (10.1016/j.jcis.2019.12.091_b0095) 2019; 548
Tan (10.1016/j.jcis.2019.12.091_b0015) 2019; 7
Seh (10.1016/j.jcis.2019.12.091_b0185) 2016; 1
Tang (10.1016/j.jcis.2019.12.091_b0040) 2019; 463
Di (10.1016/j.jcis.2019.12.091_b0105) 2017; 352
Yang (10.1016/j.jcis.2019.12.091_b0310) 2019; 255
Sun (10.1016/j.jcis.2019.12.091_b0035) 2018; 300
Zhang (10.1016/j.jcis.2019.12.091_b0090) 2016; 464
Sun (10.1016/j.jcis.2019.12.091_b0250) 2014; 315
Li (10.1016/j.jcis.2019.12.091_b0150) 2019
Jiao (10.1016/j.jcis.2019.12.091_b0055) 2017; 209
Hong (10.1016/j.jcis.2019.12.091_b0160) 2014; 6
Li (10.1016/j.jcis.2019.12.091_b0320) 2016; 8
Olowoyo (10.1016/j.jcis.2019.12.091_b0025) 2019; 147
Rahman (10.1016/j.jcis.2019.12.091_b0080) 2018; 6
Khatib (10.1016/j.jcis.2019.12.091_b0005) 2012; 48
Yu (10.1016/j.jcis.2019.12.091_b0200) 2019; 35
Tan (10.1016/j.jcis.2019.12.091_b0245) 2017; 308
Li (10.1016/j.jcis.2019.12.091_b0135) 2018; 439
Naguib (10.1016/j.jcis.2019.12.091_b0175) 2011; 23
Attanayake (10.1016/j.jcis.2019.12.091_b0190) 2018; 6
He (10.1016/j.jcis.2019.12.091_b0100) 2015; 49
Wang (10.1016/j.jcis.2019.12.091_b0030) 2016; 14
Fu (10.1016/j.jcis.2019.12.091_b0010) 2019; 34
Xia (10.1016/j.jcis.2019.12.091_b0285) 2014; 1
Han (10.1016/j.jcis.2019.12.091_b0065) 2019; 7
Fu (10.1016/j.jcis.2019.12.091_b0070) 2017; 13
Guo (10.1016/j.jcis.2019.12.091_b0290) 2017; 218
Gao (10.1016/j.jcis.2019.12.091_b0140) 2016; 138
Dong (10.1016/j.jcis.2019.12.091_b0280) 2011; 21
Jo (10.1016/j.jcis.2019.12.091_b0125) 2018; 239
Yu (10.1016/j.jcis.2019.12.091_b0195) 2018; 44
Lee (10.1016/j.jcis.2019.12.091_b0240) 2013; 132–133
Sun (10.1016/j.jcis.2019.12.091_b0170) 2017; 216
Cao (10.1016/j.jcis.2019.12.091_b0220) 2018; 28
Fu (10.1016/j.jcis.2019.12.091_b0205) 2019; 375
Liu (10.1016/j.jcis.2019.12.091_b0325) 2016; 138
Wang (10.1016/j.jcis.2019.12.091_b0330) 2018; 140
Wang (10.1016/j.jcis.2019.12.091_b0230) 2009; 8
Habisreutinger (10.1016/j.jcis.2019.12.091_b0060) 2013; 52
Cheng (10.1016/j.jcis.2019.12.091_b0180) 2019; 10
Jiang (10.1016/j.jcis.2019.12.091_b0110) 2018; 9
Yang (10.1016/j.jcis.2019.12.091_b0265) 2019; 245
Nie (10.1016/j.jcis.2019.12.091_b0115) 2018; 441
Shen (10.1016/j.jcis.2019.12.091_b0295) 2019; 7
Ran (10.1016/j.jcis.2019.12.091_b0020) 2018; 30
10.1016/j.jcis.2019.12.091_b0085
Ong (10.1016/j.jcis.2019.12.091_b0235) 2014; 7
Liu (10.1016/j.jcis.2019.12.091_b0260) 2011; 21
References_xml – volume: 30
  start-page: 1704649
  year: 2018
  ident: b0020
  article-title: Cocatalysts in semiconductor-based photocatalytic CO
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1602725
  year: 2017
  ident: b0275
  article-title: Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 9368
  year: 2019
  end-page: 9385
  ident: b0015
  article-title: A review of nanostructured non-titania photocatalysts and hole scavenging agents for CO
  publication-title: J. Mater. Chem. A.
– volume: 245
  start-page: 87
  year: 2019
  end-page: 99
  ident: b0265
  article-title: Boron nitride quantum dots decorated ultrathin porous g-C
  publication-title: Appl. Catal. B
– volume: 8
  start-page: 3765
  year: 2016
  end-page: 3775
  ident: b0120
  article-title: Indirect Z-scheme BiOI/g-C
  publication-title: ACS Appl. Mater. Interfaces
– volume: 239
  start-page: 586
  year: 2018
  end-page: 598
  ident: b0125
  article-title: Construction of Bi
  publication-title: Appl. Catal. B
– volume: 35
  start-page: 2909
  year: 2019
  end-page: 2916
  ident: b0200
  article-title: Decorating g-C
  publication-title: Langmuir
– volume: 16
  start-page: 5547
  year: 2016
  end-page: 5552
  ident: b0300
  article-title: Construction and nanoscale detection of interfacial charge transfer of elegant Z-scheme WO
  publication-title: Nano Lett.
– volume: 254
  start-page: 270
  year: 2019
  end-page: 282
  ident: b0075
  article-title: Insights into photocatalytic CO
  publication-title: Appl. Catal. B
– volume: 141
  start-page: 7615
  year: 2019
  end-page: 7621
  ident: b0045
  article-title: A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 16882
  year: 2018
  end-page: 16889
  ident: b0190
  article-title: Vertically aligned MoS
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: 7633
  year: 2017
  end-page: 7644
  ident: b0255
  article-title: Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti
  publication-title: Chem. Mater.
– volume: 10
  start-page: 3488
  year: 2019
  end-page: 3494
  ident: b0180
  article-title: Two-dimensional transition metal MXene-based photocatalysts for solar fuel generation
  publication-title: J. Phys. Chem. Lett.
– volume: 375
  start-page: 121939
  year: 2019
  ident: b0205
  article-title: Two-dimensional titanium carbide (MXene)-wrapped sisal-Like NiCo
  publication-title: Chem. Eng. J.
– volume: 132–133
  start-page: 445
  year: 2013
  end-page: 451
  ident: b0240
  article-title: A novel twin reactor for CO
  publication-title: Appl. Catal. B
– volume: 139
  start-page: 4737
  year: 2017
  end-page: 4742
  ident: b0335
  article-title: Giant electron-hole interactions in confined layered structures for molecular oxygen activation
  publication-title: J. Am. Chem. Soc.
– volume: 463
  start-page: 456
  year: 2019
  end-page: 462
  ident: b0040
  article-title: Enhanced CO
  publication-title: Appl. Surf. Sci.
– volume: 14
  start-page: 143
  year: 2016
  end-page: 151
  ident: b0030
  article-title: Surprisingly advanced CO
  publication-title: J. CO
– volume: 6
  start-page: 1305
  year: 2018
  end-page: 1322
  ident: b0080
  article-title: Carbon, nitrogen and phosphorus containing metal-free photocatalysts for hydrogen production: progress and challenges
  publication-title: J. Mater. Chem. A
– volume: 352
  start-page: 532
  year: 2017
  end-page: 541
  ident: b0105
  article-title: A direct Z-scheme g-C
  publication-title: J. Catal.
– volume: 464
  start-page: 89
  year: 2016
  end-page: 95
  ident: b0090
  article-title: Photocatalytic CO
  publication-title: J. Colloid Interface Sci.
– volume: 300
  start-page: 160
  year: 2018
  end-page: 172
  ident: b0035
  article-title: g-C
  publication-title: Catal. Today
– volume: 7
  start-page: 1556
  year: 2019
  end-page: 1563
  ident: b0295
  article-title: Carbon-vacancy modified graphitic carbon nitride: enhanced CO
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 1700003
  year: 2017
  ident: b0165
  article-title: Enriching CO
  publication-title: Adv. Sustain. Syst.
– volume: 28
  start-page: 1800136
  year: 2018
  ident: b0220
  article-title: 2D/2D heterojunction of ultrathin MXene/Bi
  publication-title: Adv. Funct. Mater.
– volume: 255
  start-page: 117771
  year: 2019
  ident: b0310
  article-title: Urchin-like hierarchical CoZnAl-LDH/RGO/g-C
  publication-title: Appl. Catal. B
– volume: 44
  start-page: 181
  year: 2018
  end-page: 190
  ident: b0195
  article-title: Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene
  publication-title: Nano Energy
– volume: 7
  start-page: 9726
  year: 2019
  end-page: 9735
  ident: b0065
  article-title: Chainmail co-catalyst of NiO shell-encapsulated Ni for improving photocatalytic CO
  publication-title: J. Mater. Chem. A.
– volume: 441
  start-page: 12
  year: 2018
  end-page: 22
  ident: b0115
  article-title: Self-assembled hierarchical direct Z-scheme g-C
  publication-title: Appl. Surf. Sci.
– volume: 21
  start-page: 14398
  year: 2011
  ident: b0260
  article-title: Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity
  publication-title: J. Mater. Chem.
– volume: 48
  start-page: 737
  year: 2012
  end-page: 743
  ident: b0005
  article-title: IEA world energy outlook 2011—a comment
  publication-title: Energy Policy
– volume: 8
  start-page: 2111
  year: 2016
  end-page: 2119
  ident: b0320
  article-title: Uncovering the key role of the fermi level of the electron mediator in a Z-scheme photocatalyst by detecting the charge transfer process of WO
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 7
  start-page: 8156
  year: 2019
  end-page: 8166
  ident: b0050
  article-title: New understanding of crystal control and facet selectivity of titanium dioxide ruling photocatalytic performance
  publication-title: J. Mater. Chem. A.
– volume: 13
  start-page: 1603938
  year: 2017
  ident: b0070
  article-title: Hierarchical porous O-doped g-C
  publication-title: Small
– reference: N.T. Thanh Truc, L. Giang Bach, N. Thi Hanh, T.-D. Pham, N. Thi Phuong Le Chi, D.T. Tran, M.V. Nguyen, V.N. Nguyen, The superior photocatalytic activity of Nb doped TiO2/g-C3N4 direct Z-scheme system for efficient conversion of CO2 into valuable fuels, J. Colloid Interface Sci. 540 (2019) 1–8. Doi: 10.1016/j.jcis.2019.01.005.
– volume: 49
  start-page: 649
  year: 2015
  end-page: 656
  ident: b0100
  article-title: New application of Z-scheme Ag
  publication-title: Environ. Sci. Technol.
– volume: 118
  start-page: 20982
  year: 2014
  end-page: 20988
  ident: b0315
  article-title: Adjustment and control of energy levels for TiO
  publication-title: J. Phys. Chem. C.
– volume: 308
  start-page: 248
  year: 2017
  end-page: 255
  ident: b0245
  article-title: Photocatalytic reduction of CO
  publication-title: Chem. Eng. J.
– volume: 52
  start-page: 7372
  year: 2013
  end-page: 7408
  ident: b0060
  article-title: Photocatalytic reduction of CO
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 6174
  year: 2019
  end-page: 6183
  ident: b0130
  article-title: Direct Z-scheme g-C
  publication-title: ACS Appl. Mater. Interfaces
– volume: 211
  start-page: 1
  year: 2017
  end-page: 10
  ident: b0155
  article-title: Enhanced photocatalytic conversion of greenhouse gas CO
  publication-title: Appl. Catal. B
– volume: 11
  start-page: 1606
  year: 2018
  end-page: 1611
  ident: b0225
  article-title: Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surface-alkalinized titanium carbide MXene as cocatalyst
  publication-title: ChemSusChem
– volume: 6
  start-page: 2315
  year: 2014
  end-page: 2321
  ident: b0160
  article-title: Photocatalytic reduction of carbon dioxide over self-assembled carbon nitride and layered double hydroxide: the role of carbon dioxide enrichment
  publication-title: ChemCatChem
– volume: 147
  start-page: 385
  year: 2019
  end-page: 397
  ident: b0025
  article-title: Self-assembled reduced graphene oxide-TiO
  publication-title: Carbon
– volume: 138
  start-page: 15853
  year: 2016
  end-page: 15856
  ident: b0325
  article-title: Schottky-Barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 6292
  year: 2016
  end-page: 6297
  ident: b0140
  article-title: Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide
  publication-title: J. Am. Chem. Soc.
– year: 2019
  ident: b0150
  article-title: Cocatalysts for selective photoreduction of CO
  publication-title: Chem. Rev.
– volume: 5
  start-page: 12899
  year: 2017
  end-page: 12903
  ident: b0210
  article-title: Ti
  publication-title: J. Mater. Chem. A.
– volume: 140
  start-page: 1760
  year: 2018
  end-page: 1766
  ident: b0330
  article-title: Oxygen-vacancy-mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation
  publication-title: J. Am. Chem. Soc.
– volume: 548
  start-page: 197
  year: 2019
  end-page: 205
  ident: b0095
  article-title: Synthesis and optimization of the trimesic acid modified polymeric carbon nitride for enhanced photocatalytic reduction of CO
  publication-title: J. Colloid Interface Sci.
– volume: 1
  start-page: 379
  year: 2014
  end-page: 399
  ident: b0285
  article-title: Recent progress on graphene-based hybrid electrocatalysts
  publication-title: Mater. Horiz.
– volume: 30
  start-page: 1804282
  year: 2018
  ident: b0305
  article-title: Synthesis of particulate hierarchical tandem heterojunctions toward optimized photocatalytic hydrogen production
  publication-title: Adv. Mater.
– volume: 107
  start-page: 2365
  year: 2007
  end-page: 2387
  ident: b0145
  article-title: Transformation of carbon dioxide
  publication-title: Chem. Rev.
– volume: 7
  start-page: 1528
  year: 2014
  end-page: 1547
  ident: b0235
  article-title: Self-assembly of nitrogen-doped TiO2 with exposed 001 facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane
  publication-title: Nano Res.
– volume: 315
  start-page: 360
  year: 2014
  end-page: 367
  ident: b0250
  article-title: Visible-light CO
  publication-title: Appl. Surf. Sci.
– volume: 1
  start-page: 589
  year: 2016
  end-page: 594
  ident: b0185
  article-title: Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution
  publication-title: ACS Energy Lett.
– volume: 34
  start-page: 63
  year: 2019
  end-page: 73
  ident: b0010
  article-title: Photocatalytic conversion of carbon dioxide: from products to design the catalysts
  publication-title: J. CO
– volume: 9
  year: 2018
  ident: b0110
  article-title: A hierarchical Z-scheme α-Fe
  publication-title: Adv. Mater.
– volume: 21
  start-page: 15171
  year: 2011
  ident: b0280
  article-title: Efficient synthesis of polymeric g-C
  publication-title: J. Mater. Chem.
– volume: 8
  start-page: 76
  year: 2009
  end-page: 80
  ident: b0230
  article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light
  publication-title: Nat. Mater.
– volume: 218
  start-page: 664
  year: 2017
  end-page: 671
  ident: b0290
  article-title: P-doped tubular g-C
  publication-title: Appl. Catal. B
– volume: 209
  start-page: 228
  year: 2017
  end-page: 239
  ident: b0055
  article-title: AuPd/3DOM-TiO
  publication-title: Appl. Catal. B
– volume: 439
  start-page: 552
  year: 2018
  end-page: 559
  ident: b0135
  article-title: Enhanced selective photocatalytic reduction of CO
  publication-title: Appl. Surf. Sci.
– volume: 216
  start-page: 146
  year: 2017
  end-page: 155
  ident: b0170
  article-title: Enhanced CO
  publication-title: Appl. Catal. B
– volume: 361
  start-page: 255
  year: 2018
  end-page: 266
  ident: b0215
  article-title: TiO
  publication-title: J. Catal.
– year: 2018
  ident: b0270
  article-title: Alkali metal-assisted synthesis of graphite carbon nitride with tunable band-gap for enhanced visible-light-driven photocatalytic performance
  publication-title: ACS Sustain. Chem. Eng.
– volume: 23
  start-page: 4248
  year: 2011
  end-page: 4253
  ident: b0175
  article-title: Two-dimensional nanocrystals produced by exfoliation of Ti
  publication-title: Adv. Mater.
– volume: 7
  start-page: 9368
  year: 2019
  ident: 10.1016/j.jcis.2019.12.091_b0015
  article-title: A review of nanostructured non-titania photocatalysts and hole scavenging agents for CO2 photoreduction processes
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C8TA10410G
– volume: 1
  start-page: 379
  year: 2014
  ident: 10.1016/j.jcis.2019.12.091_b0285
  article-title: Recent progress on graphene-based hybrid electrocatalysts
  publication-title: Mater. Horiz.
  doi: 10.1039/C4MH00040D
– volume: 8
  start-page: 3765
  year: 2016
  ident: 10.1016/j.jcis.2019.12.091_b0120
  article-title: Indirect Z-scheme BiOI/g-C3N4 photocatalysts with enhanced photoreduction CO2 activity under visible light irradiation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b09901
– volume: 52
  start-page: 7372
  year: 2013
  ident: 10.1016/j.jcis.2019.12.091_b0060
  article-title: Photocatalytic reduction of CO2 on TiO2 and other semiconductors
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201207199
– volume: 49
  start-page: 649
  year: 2015
  ident: 10.1016/j.jcis.2019.12.091_b0100
  article-title: New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5046309
– volume: 107
  start-page: 2365
  year: 2007
  ident: 10.1016/j.jcis.2019.12.091_b0145
  article-title: Transformation of carbon dioxide
  publication-title: Chem. Rev.
  doi: 10.1021/cr068357u
– volume: 216
  start-page: 146
  year: 2017
  ident: 10.1016/j.jcis.2019.12.091_b0170
  article-title: Enhanced CO2 photocatalytic reduction on alkali-decorated graphitic carbon nitride
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.05.064
– volume: 141
  start-page: 7615
  year: 2019
  ident: 10.1016/j.jcis.2019.12.091_b0045
  article-title: A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b02997
– year: 2018
  ident: 10.1016/j.jcis.2019.12.091_b0270
  article-title: Alkali metal-assisted synthesis of graphite carbon nitride with tunable band-gap for enhanced visible-light-driven photocatalytic performance
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b03965
– volume: 7
  start-page: 1528
  year: 2014
  ident: 10.1016/j.jcis.2019.12.091_b0235
  article-title: Self-assembly of nitrogen-doped TiO2 with exposed 001 facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0514-z
– volume: 6
  start-page: 1305
  year: 2018
  ident: 10.1016/j.jcis.2019.12.091_b0080
  article-title: Carbon, nitrogen and phosphorus containing metal-free photocatalysts for hydrogen production: progress and challenges
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10404A
– volume: 138
  start-page: 15853
  year: 2016
  ident: 10.1016/j.jcis.2019.12.091_b0325
  article-title: Schottky-Barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b10834
– volume: 439
  start-page: 552
  year: 2018
  ident: 10.1016/j.jcis.2019.12.091_b0135
  article-title: Enhanced selective photocatalytic reduction of CO2 to CH4 over plasmonic Au modified g-C3N4 photocatalyst under UV–vis light irradiation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.01.071
– volume: 7
  start-page: 8156
  year: 2019
  ident: 10.1016/j.jcis.2019.12.091_b0050
  article-title: New understanding of crystal control and facet selectivity of titanium dioxide ruling photocatalytic performance
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C8TA11475G
– volume: 1
  start-page: 1700003
  year: 2017
  ident: 10.1016/j.jcis.2019.12.091_b0165
  article-title: Enriching CO2 activation sites on graphitic carbon nitride with simultaneous introduction of electron-transfer promoters for superior photocatalytic CO2-to-fuel conversion
  publication-title: Adv. Sustain. Syst.
  doi: 10.1002/adsu.201700003
– volume: 315
  start-page: 360
  year: 2014
  ident: 10.1016/j.jcis.2019.12.091_b0250
  article-title: Visible-light CO2 photocatalytic reduction performance of ball-flower-like Bi2WO6 synthesized without organic precursor: effect of post-calcination and water vapor
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.07.153
– volume: 48
  start-page: 737
  year: 2012
  ident: 10.1016/j.jcis.2019.12.091_b0005
  article-title: IEA world energy outlook 2011—a comment
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2012.06.007
– volume: 132–133
  start-page: 445
  year: 2013
  ident: 10.1016/j.jcis.2019.12.091_b0240
  article-title: A novel twin reactor for CO2 photoreduction to mimic artificial photosynthesis
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2012.12.024
– volume: 6
  start-page: 2315
  year: 2014
  ident: 10.1016/j.jcis.2019.12.091_b0160
  article-title: Photocatalytic reduction of carbon dioxide over self-assembled carbon nitride and layered double hydroxide: the role of carbon dioxide enrichment
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201402195
– volume: 10
  start-page: 3488
  year: 2019
  ident: 10.1016/j.jcis.2019.12.091_b0180
  article-title: Two-dimensional transition metal MXene-based photocatalysts for solar fuel generation
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b00736
– volume: 28
  start-page: 1800136
  year: 2018
  ident: 10.1016/j.jcis.2019.12.091_b0220
  article-title: 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800136
– volume: 21
  start-page: 14398
  year: 2011
  ident: 10.1016/j.jcis.2019.12.091_b0260
  article-title: Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm12620b
– year: 2019
  ident: 10.1016/j.jcis.2019.12.091_b0150
  article-title: Cocatalysts for selective photoreduction of CO2 into solar fuels
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00400
– volume: 44
  start-page: 181
  year: 2018
  ident: 10.1016/j.jcis.2019.12.091_b0195
  article-title: Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.003
– volume: 29
  start-page: 7633
  year: 2017
  ident: 10.1016/j.jcis.2019.12.091_b0255
  article-title: Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02847
– volume: 7
  start-page: 1556
  year: 2019
  ident: 10.1016/j.jcis.2019.12.091_b0295
  article-title: Carbon-vacancy modified graphitic carbon nitride: enhanced CO2 photocatalytic reduction performance and mechanism probing
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09302D
– volume: 30
  start-page: 1704649
  year: 2018
  ident: 10.1016/j.jcis.2019.12.091_b0020
  article-title: Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704649
– volume: 35
  start-page: 2909
  year: 2019
  ident: 10.1016/j.jcis.2019.12.091_b0200
  article-title: Decorating g-C3N4 nanosheets with Ti3C2 MXene nanoparticles for efficient oxygen reduction reaction
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b03456
– volume: 464
  start-page: 89
  year: 2016
  ident: 10.1016/j.jcis.2019.12.091_b0090
  article-title: Photocatalytic CO2 reduction over B4 C/C3N4 with internal electric field under visible light irradiation
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2015.11.022
– volume: 441
  start-page: 12
  year: 2018
  ident: 10.1016/j.jcis.2019.12.091_b0115
  article-title: Self-assembled hierarchical direct Z-scheme g-C3N4/ZnO microspheres with enhanced photocatalytic CO2 reduction performance
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.01.193
– volume: 255
  start-page: 117771
  year: 2019
  ident: 10.1016/j.jcis.2019.12.091_b0310
  article-title: Urchin-like hierarchical CoZnAl-LDH/RGO/g-C3N4 hybrid as a Z-scheme photocatalyst for efficient and selective CO2 reduction
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.117771
– volume: 14
  start-page: 143
  year: 2016
  ident: 10.1016/j.jcis.2019.12.091_b0030
  article-title: Surprisingly advanced CO2 photocatalytic conversion over thiourea derived g-C3N4 with water vapor while introducing 200–420nm UV light
  publication-title: J. CO2 Utilizat.
  doi: 10.1016/j.jcou.2016.04.006
– volume: 23
  start-page: 4248
  year: 2011
  ident: 10.1016/j.jcis.2019.12.091_b0175
  article-title: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102306
– volume: 139
  start-page: 4737
  year: 2017
  ident: 10.1016/j.jcis.2019.12.091_b0335
  article-title: Giant electron-hole interactions in confined layered structures for molecular oxygen activation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12273
– volume: 8
  start-page: 2111
  year: 2016
  ident: 10.1016/j.jcis.2019.12.091_b0320
  article-title: Uncovering the key role of the fermi level of the electron mediator in a Z-scheme photocatalyst by detecting the charge transfer process of WO3-metal-gC3N4 (Metal = Cu, Ag, Au)
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.5b10613
– volume: 375
  start-page: 121939
  year: 2019
  ident: 10.1016/j.jcis.2019.12.091_b0205
  article-title: Two-dimensional titanium carbide (MXene)-wrapped sisal-Like NiCo2S4 as positive electrode for high-performance hybrid pouch-type asymmetric supercapacitor
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.121939
– volume: 13
  start-page: 1603938
  year: 2017
  ident: 10.1016/j.jcis.2019.12.091_b0070
  article-title: Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity
  publication-title: Small
  doi: 10.1002/smll.201603938
– volume: 9
  year: 2018
  ident: 10.1016/j.jcis.2019.12.091_b0110
  article-title: A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1606
  year: 2018
  ident: 10.1016/j.jcis.2019.12.091_b0225
  article-title: Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surface-alkalinized titanium carbide MXene as cocatalyst
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201800083
– volume: 361
  start-page: 255
  year: 2018
  ident: 10.1016/j.jcis.2019.12.091_b0215
  article-title: TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.03.009
– volume: 7
  start-page: 9726
  year: 2019
  ident: 10.1016/j.jcis.2019.12.091_b0065
  article-title: Chainmail co-catalyst of NiO shell-encapsulated Ni for improving photocatalytic CO2 reduction over g-C3N4
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C9TA01061K
– ident: 10.1016/j.jcis.2019.12.091_b0085
  doi: 10.1016/j.jcis.2019.01.005
– volume: 211
  start-page: 1
  year: 2017
  ident: 10.1016/j.jcis.2019.12.091_b0155
  article-title: Enhanced photocatalytic conversion of greenhouse gas CO2 into solar fuels over g-C3N4 nanotubes with decorated transparent ZIF-8 nanoclusters
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.04.009
– volume: 209
  start-page: 228
  year: 2017
  ident: 10.1016/j.jcis.2019.12.091_b0055
  article-title: AuPd/3DOM-TiO2 catalysts for photocatalytic reduction of CO2: high efficient separation of photogenerated charge carriers
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.02.076
– volume: 352
  start-page: 532
  year: 2017
  ident: 10.1016/j.jcis.2019.12.091_b0105
  article-title: A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2017.06.006
– volume: 34
  start-page: 63
  year: 2019
  ident: 10.1016/j.jcis.2019.12.091_b0010
  article-title: Photocatalytic conversion of carbon dioxide: from products to design the catalysts
  publication-title: J. CO2 Utilizat.
  doi: 10.1016/j.jcou.2019.05.032
– volume: 218
  start-page: 664
  year: 2017
  ident: 10.1016/j.jcis.2019.12.091_b0290
  article-title: P-doped tubular g-C3N4 with surface carbon defects: universal synthesis and enhanced visible-light photocatalytic hydrogen production
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.07.022
– volume: 8
  start-page: 76
  year: 2009
  ident: 10.1016/j.jcis.2019.12.091_b0230
  article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2317
– volume: 548
  start-page: 197
  year: 2019
  ident: 10.1016/j.jcis.2019.12.091_b0095
  article-title: Synthesis and optimization of the trimesic acid modified polymeric carbon nitride for enhanced photocatalytic reduction of CO2
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.04.037
– volume: 30
  start-page: 1804282
  year: 2018
  ident: 10.1016/j.jcis.2019.12.091_b0305
  article-title: Synthesis of particulate hierarchical tandem heterojunctions toward optimized photocatalytic hydrogen production
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804282
– volume: 1
  start-page: 589
  year: 2016
  ident: 10.1016/j.jcis.2019.12.091_b0185
  article-title: Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00247
– volume: 140
  start-page: 1760
  year: 2018
  ident: 10.1016/j.jcis.2019.12.091_b0330
  article-title: Oxygen-vacancy-mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10997
– volume: 11
  start-page: 6174
  year: 2019
  ident: 10.1016/j.jcis.2019.12.091_b0130
  article-title: Direct Z-scheme g-C3N4/FeWO4 nanocomposite for enhanced and selective photocatalytic CO2 reduction under visible light
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b22434
– volume: 308
  start-page: 248
  year: 2017
  ident: 10.1016/j.jcis.2019.12.091_b0245
  article-title: Photocatalytic reduction of CO2 with H2O over graphene oxide-supported oxygen-rich TiO2 hybrid photocatalyst under visible light irradiation: process and kinetic studies
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.09.050
– volume: 300
  start-page: 160
  year: 2018
  ident: 10.1016/j.jcis.2019.12.091_b0035
  article-title: g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2017.05.033
– volume: 6
  start-page: 16882
  year: 2018
  ident: 10.1016/j.jcis.2019.12.091_b0190
  article-title: Vertically aligned MoS2 on Ti3C2 (MXene) as an improved HER catalyst
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05033C
– volume: 118
  start-page: 20982
  year: 2014
  ident: 10.1016/j.jcis.2019.12.091_b0315
  article-title: Adjustment and control of energy levels for TiO2–N/ZrO2– xNx with enhanced visible light photocatalytic activity
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp505921s
– volume: 254
  start-page: 270
  year: 2019
  ident: 10.1016/j.jcis.2019.12.091_b0075
  article-title: Insights into photocatalytic CO2 reduction on C3N4: strategy of simultaneous B K co-doping and enhancement by N vacancies
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.05.002
– volume: 5
  start-page: 12899
  year: 2017
  ident: 10.1016/j.jcis.2019.12.091_b0210
  article-title: Ti2CO2 MXene: a highly active and selective photocatalyst for CO2 reduction
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C7TA03557H
– volume: 16
  start-page: 5547
  year: 2016
  ident: 10.1016/j.jcis.2019.12.091_b0300
  article-title: Construction and nanoscale detection of interfacial charge transfer of elegant Z-scheme WO3/Au/In2S3 nanowire arrays
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b02094
– volume: 239
  start-page: 586
  year: 2018
  ident: 10.1016/j.jcis.2019.12.091_b0125
  article-title: Construction of Bi2WO6/RGO/g-C3N4 2D/2D/2D hybrid Z-scheme heterojunctions with large interfacial contact area for efficient charge separation and high-performance photoreduction of CO2 and H2O into solar fuels
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.08.056
– volume: 7
  start-page: 1602725
  year: 2017
  ident: 10.1016/j.jcis.2019.12.091_b0275
  article-title: Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602725
– volume: 138
  start-page: 6292
  year: 2016
  ident: 10.1016/j.jcis.2019.12.091_b0140
  article-title: Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02692
– volume: 245
  start-page: 87
  year: 2019
  ident: 10.1016/j.jcis.2019.12.091_b0265
  article-title: Boron nitride quantum dots decorated ultrathin porous g-C3N4: intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.12.049
– volume: 21
  start-page: 15171
  year: 2011
  ident: 10.1016/j.jcis.2019.12.091_b0280
  article-title: Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm12844b
– volume: 147
  start-page: 385
  year: 2019
  ident: 10.1016/j.jcis.2019.12.091_b0025
  article-title: Self-assembled reduced graphene oxide-TiO2 nanocomposites: synthesis, DFTB+ calculations, and enhanced photocatalytic reduction of CO2 to methanol
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.03.019
– volume: 463
  start-page: 456
  year: 2019
  ident: 10.1016/j.jcis.2019.12.091_b0040
  article-title: Enhanced CO2 photocatalytic reduction performance on alkali and alkaline earth metal ion-exchanged hydrogen titanate nanotubes
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.08.245
SSID ssj0011559
Score 2.6627584
Snippet [Display omitted] Photocatalytic reduction of carbon dioxide (CO2) under visible light irradiation for producing high-value fuel has attracted tremendous...
Photocatalytic reduction of carbon dioxide (CO2) under visible light irradiation for producing high-value fuel has attracted tremendous attention in recent...
Photocatalytic reduction of carbon dioxide (CO₂) under visible light irradiation for producing high-value fuel has attracted tremendous attention in recent...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 406
SubjectTerms adsorption
Alkalized Ti3C2
carbon dioxide
carbon monoxide
carbon nitride
catalysts
electrical conductivity
fuels
g-C3N4
graphene
irradiation
light
mixing
MXenes
nitrogen
photocatalysis
Photocatalytic CO2 reduction
titanium
Title Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance
URI https://dx.doi.org/10.1016/j.jcis.2019.12.091
https://www.proquest.com/docview/2336245514
https://www.proquest.com/docview/2400525336
Volume 564
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07bxQxELaiUAAFggAiPCIj0SGT9ftcRgvRAcrRJNJ11pzthQvR3Sq6FKTIb2dmH-EhcQXt7lhezXhnvnmasTdeA_pcBkTO3gpTCggIPglEr9DkZAEsNSefzNz0zHya2_kOq8deGCqrHHR_r9M7bT08ORy4edgul9Tji3-bDx4hCBrFCTXxGePplL-7uS3zkJR268s8pCDqoXGmr_E6T0sa2S1DFxIM8l_G6S813dme44fswQAa-VH_XY_YTlntsbv1eFfbHrv_21jBxyy_J58SqKCZfxW1nhlO4VYOF9-BGiGvS-anS10rfjJHVccRt_K2K8vDF-239WbdBXV-4G68_qL4JY13JQHy9lebwRN2dvzhtJ6K4TYFkbRzGzGxVrvsmgqgUmBk4wNKBb210CxUBgQ6OgOyMttiGyWTdC75kMykUtkll_VTtrtar8ozxo0PFlzVZElJukUVmlyQzapKAbF61vtMjmyMaRg1TjdeXMSxpuw8EusjsT5KFZH1--zt7Zq2H7SxldqO0ol_HJeIlmDrutejKCOKiJIjsCrrKyTSaMoN4cctNIai6AiQ3fP_3P8Fu6fIYa-0UOol291cXpVXiGo2i4Pu2B6wO0cfP09nPwGtHPXg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKORQOCAqIlpeRuCHT9XPjI1qoAjThkkq5WRPbW1KqZFWlh3LgtzOzj_KQyIHr7li7mrFnvhnPg7HXpQb0uQyIlEorTM4gwJdRIHqFOkULYKk4eTJ141PzaW7nO6waamEorbLX_Z1Ob7V1_-So5-ZRs1xSjS-ettKXCEHQKI78LXbb4PGlMQZvf9zkeUi6d-vyPKQg8r5ypkvyOo9L6tktfRsT9PJf1ukvPd0an-P77F6PGvm77scesJ282md71TCsbZ_d_a2v4EOW3pNTCZTRzM9EpaeGU7yVw8U3oErI7znx2VJXik_mqOs4AlfetHl5-KL5ut6s26jONX6NV18Uv6T-riRB3vyqM3jETo8_zKqx6McpiKid24iRtdolVxcAhQIj69KjWNBd8_VCJUCkoxMgL5PNtlYySudi6aMZFSq56JJ-zHZX61V-wrgpvQVX1EnSLd2i8HXKyGZVRI9gPekDJgc2htj3GqeRFxdhSCo7D8T6QKwPUgVk_QF7c7Om6TptbKW2g3TCH_sloCnYuu7VIMqAIqLbEVjl9RUSabTlhgDkFhpDYXREyO7wP7__ku2NZ5OTcPJx-vkpu6PIey-0UOoZ291cXuXnCHE2ixftFv4JSsH3bg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decorating+g-C3N4+with+alkalinized+Ti3C2+MXene+for+promoted+photocatalytic+CO2+reduction+performance&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Tang%2C+Qijun&rft.au=Sun%2C+Zhuxing&rft.au=Deng%2C+Shuang&rft.au=Wang%2C+Haiqiang&rft.date=2020-03-22&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=564&rft.spage=406&rft_id=info:doi/10.1016%2Fj.jcis.2019.12.091&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon