Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance
[Display omitted] Photocatalytic reduction of carbon dioxide (CO2) under visible light irradiation for producing high-value fuel has attracted tremendous attention in recent years. In this study, titanium carbide MXene (Ti3C2) was used as a noble metal-free co-catalyst by simply mixing graphitic car...
Saved in:
Published in | Journal of colloid and interface science Vol. 564; pp. 406 - 417 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
22.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | [Display omitted]
Photocatalytic reduction of carbon dioxide (CO2) under visible light irradiation for producing high-value fuel has attracted tremendous attention in recent years. In this study, titanium carbide MXene (Ti3C2) was used as a noble metal-free co-catalyst by simply mixing graphitic carbon nitride (g-C3N4) and alkalized Ti3C2. The carbon monoxide evolution rate of the optimized composite (5%TCOH-CN) from photocatalytic reduction of CO2 was 5.9 times higher than that of pure g-C3N4. Alkalized Ti3C2 was responsible for the superior photocatalytic activity due to its excellent electrical conductivity and large CO2 adsorption capacity. Furthermore, the separation of the photo-induced electron–hole pairs was greatly enhanced because of the large Fermi level difference between alkalized Ti3C2 and pure g-C3N4. This work demonstrates the potential of MXenes as noble metal-free co-catalyst for photocatalysis processes such as carbon dioxide reduction reaction and nitrogen reduction reaction. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9797 1095-7103 1095-7103 |
DOI: | 10.1016/j.jcis.2019.12.091 |