Optimum semiconductors for high-power electronics

Elemental and compound semiconductors, including wide-bandgap semiconductors, are critically examined for high-power electronic applications in terms of several parameters. On the basis of an analysis applicable to a wide range of semiconducting materials and by using the available measured physical...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 36; no. 9; pp. 1811 - 1823
Main Authors Shenai, K., Scott, R.S., Baliga, B.J.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.1989
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Elemental and compound semiconductors, including wide-bandgap semiconductors, are critically examined for high-power electronic applications in terms of several parameters. On the basis of an analysis applicable to a wide range of semiconducting materials and by using the available measured physical parameters, it is shown that wide-bandgap semiconductors such as SiC and diamond could offer significant advantages compared to either silicon or group III-V compound semiconductors for these applications. The analysis uses peak electric field strength at avalanche breakdown as a critical material parameter for evaluating the quality of a semiconducting material for high-power electronics. Theoretical calculations show improvement by orders of magnitude in the on-resistance, twentyfold improvement in the maximum frequency of operation, and potential for successful operation at temperatures beyond 600 degrees C for diamond high-power devices. New figures of merit for power-handling capability that emphasize electrical and thermal conductivities of the material are derived and are applied to various semiconducting materials. It is shown that an improvement in power-handling capabilities of semiconductor devices by three orders of magnitude is feasible by replacing silicon with silicon carbide; improvement in power-handling capability by six orders of magnitude is projected for diamond-based devices.< >
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9383
1557-9646
DOI:10.1109/16.34247