Analysis of Rate of Force Development as a Vertical Jump Height Predictor

Purpose: Many researchers and coaches hold that the ability to generate force rapidly is an important factor in athletic performance. This concept is often studied by analyzing the rate of ground reaction force development (RFD) during vertical jumps; however, many such studies disagree on whether e...

Full description

Saved in:
Bibliographic Details
Published inResearch quarterly for exercise and sport Vol. 94; no. 3; pp. 638 - 645
Main Authors Miller, Jonathan D., Fry, Andrew C., Ciccone, Anthony B., Poggio, John
Format Journal Article
LanguageEnglish
Published United States Routledge 03.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose: Many researchers and coaches hold that the ability to generate force rapidly is an important factor in athletic performance. This concept is often studied by analyzing the rate of ground reaction force development (RFD) during vertical jumps; however, many such studies disagree on whether estimates of RFD are true predictors of vertical jump height, have limited sample sizes, and have not employed multiple regression analysis. Therefore, the purpose of the study was to assess the utility of RFD as a predictor of vertical jump height. Methods: Forward sequential multiple regression models were performed using kinematic, kinetic, and demographic variables from a database of maximal countermovement vertical jumps collected via motion capture system from 2,258 NCAA Division I athletes. Results: Peak RFD was a significant bivariate predictor of vertical jump height (r = 0.408, p < .001). However, when other variables were included in the prediction model the partial variance in vertical jump height accounted for by peak RFD was nearly eliminated (r = −0.051, β = −0.051), but sex (r = 0.246, β = 0.94) and peak ground reaction force (r = 0.503, β = 1.109) emerged as predictors of partial variance in jump height. Furthermore, mediation analysis revealed the direct effect of peak RFD on vertical jump height was only 0.004. Conclusions: Multiple regression analysis enabled by a large sample size suggests Peak RFD may not be uniquely useful as a predictor of vertical jump height during maximal countermovement jumps.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0270-1367
2168-3824
2168-3824
DOI:10.1080/02701367.2022.2036315