Curvature and Vibration Sensing Based on Core Diameter Mismatch Structures

Core diameter mismatch structures are proposed and experimentally investigated for curvature and vibration sensing. Two configurations are suggested, one approach uses a structure formed by splicing an uncoated short section of multimode fiber between two standard single-mode fibers (SMFs) single-mo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 65; no. 9; pp. 2120 - 2128
Main Authors Fernandes, Cindy S., Rocco Giraldi, Maria Thereza M., de Sousa, Marco J., Costa, Joao C. W. A., Gouveia, Carlos, Jorge, Pedro, Franco, Marcos A. R.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Core diameter mismatch structures are proposed and experimentally investigated for curvature and vibration sensing. Two configurations are suggested, one approach uses a structure formed by splicing an uncoated short section of multimode fiber between two standard single-mode fibers (SMFs) single-mode-multimode-single-mode (SMS), combined to a fiber optical mirror at its end, and the other approach uses a structure made by splicing a section of SMF between two multimode fibers (SMSMS). In the curvature analysis, the proposed SMS sensor generates the destructive interference patterns when it is bent, varying only the attenuation of the optical signal without wavelength shifts. The SMSMS vibration sensor proved to be suitable to monitor very low frequencies such as 0.1 Hz. The configuration of the proposed sensors presents several interesting features, such as easy fabrication, low cost, high efficiency, and high sensitivity. These advantages make such sensors very useful in a wide range of applications, for instance, structural health monitoring.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0018-9456
1557-9662
DOI:10.1109/TIM.2016.2571378