Joint Optimal Routing and Power Allocation for Spectral Efficiency in Multihop Wireless Networks
Given a multihop wireless network and a source-destination pair of nodes, this paper addresses the problem of jointly selecting a communication route and allocating transmit power levels, so that the end-to-end spectral efficiency of the route exceeds a desired threshold. Spectral-efficient routing...
Saved in:
Published in | IEEE transactions on wireless communications Vol. 13; no. 5; pp. 2530 - 2539 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.05.2014
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Given a multihop wireless network and a source-destination pair of nodes, this paper addresses the problem of jointly selecting a communication route and allocating transmit power levels, so that the end-to-end spectral efficiency of the route exceeds a desired threshold. Spectral-efficient routing has been subject to interest in the recent literature. The transmit power level, however, has been assumed to be known, and route selection was considered in isolation. This paper presents the first rigourously proven optimal, polynomial-time algorithms for two versions of the joint spectral-efficient routing and power allocation problem: sum-power minimization and maximum power minimization. The proposed algorithms rely on the divide-and-conquer principle and the Bellman-Ford algorithm for shortest (or widest) path computation. Our computational results further illustrate the efficiency of the proposed approach. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1536-1276 1558-2248 |
DOI: | 10.1109/TWC.2014.031914.121830 |