Artificial Neural Network Model of SOS-MOSFETs Based on Dynamic Large-Signal Measurements

A measurement-based quasi-static nonlinear field-effect transistor (FET) model relying on an artificial neural network (ANN) approach and using real-time active load-pull (RTALP) measurement data for the model extraction is presented for an SOS-MOSFET. The efficient phase sweeping of the RTALP drast...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on microwave theory and techniques Vol. 62; no. 3; pp. 491 - 501
Main Authors Youngseo Ko, Roblin, Patrick, Zarate-de Landa, Andres, Apolinar Reynoso-Hernandez, J., Nobbe, Dan, Olson, Chris, Martinez, Francisco Javier
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A measurement-based quasi-static nonlinear field-effect transistor (FET) model relying on an artificial neural network (ANN) approach and using real-time active load-pull (RTALP) measurement data for the model extraction is presented for an SOS-MOSFET. The efficient phase sweeping of the RTALP drastically reduces the number of large-signal measurements needed for the model development and verification while maintaining the same intrinsic voltage coverage as in conventional passive or active load-pull systems. Memory effects associated with the parasitic bipolar junction transistor (BJT) in the SOS-MOSFET are accounted for by using a physical circuit topology together with the simultaneous ANN extraction of: 1) the intrinsic FET current-voltage characteristics; 2) the intrinsic charges of the FET; and 3) the BJT dc characteristics, all from the same modulated large-signal RF data. The verification of the model using load-lines, output power, power efficiency, and load-pull, which is performed using two additional independent RTALP measurements, demonstrates that a reasonably accurate large-signal RF device model accounting for memory effects can be extracted from a single 10.5-ms RTALP measurement with a physically based ANN model.
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2014.2298372