Linear Precoding with Resource Allocation for MIMO Relay Channels

This paper considers a half-duplex relay channel with a single source, relay, and destination, where each node has multiple antennas and the relay operates in decode-and-forward (DF) mode. The additional degrees of freedoms introduced by the MIMO channels entail increased complexity in comparison wi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 12; no. 11; pp. 5704 - 5716
Main Authors Monroy, Edwin, Choi, Sunghyun, Jabbari, Bijan
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.11.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper considers a half-duplex relay channel with a single source, relay, and destination, where each node has multiple antennas and the relay operates in decode-and-forward (DF) mode. The additional degrees of freedoms introduced by the MIMO channels entail increased complexity in comparison with the single antenna case. We propose a new transmission strategy for the relay channel that is able to take advantage of the MIMO gains while employing practical techniques that help reduce complexity. In the proposed scheme, the source splits its message in two parts and sends them to the destination, one part directly and the other with help from the relay. For such a transmission strategy, we formulate the problem of obtaining the rate-maximizing linear precoding matrices with time, power, and spatial stream allocation and transform the problem into a convex form. We also propose a suboptimal algorithm that provides simplifying expressions to solve the resulting problem with far less computational complexity. The numerical results show that the achievable rate of our scheme is greater than the DF rate in certain scenarios, as well as that of other practical existing strategies. In addition, the rate obtained by the suboptimal method approximates the optimal rate extremely well in all considered scenarios.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2013.093013.122002