Comparison of Niskin vs. in situ approaches for analysis of gene expression in deep Mediterranean Sea water samples

Obtaining an accurate picture of microbial processes occurring in situ is essential for our understanding of marine biogeochemical cycles of global importance. Water samples are typically collected at depth and returned to the sea surface for processing and downstream experiments. Metatranscriptome...

Full description

Saved in:
Bibliographic Details
Published inDeep-sea research. Part II, Topical studies in oceanography Vol. 129; pp. 213 - 222
Main Authors Edgcomb, V.P., Taylor, C., Pachiadaki, M.G., Honjo, S., Engstrom, I., Yakimov, M.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Obtaining an accurate picture of microbial processes occurring in situ is essential for our understanding of marine biogeochemical cycles of global importance. Water samples are typically collected at depth and returned to the sea surface for processing and downstream experiments. Metatranscriptome analysis is one powerful approach for investigating metabolic activities of microorganisms in their habitat and which can be informative for determining responses of microbiota to disturbances such as the Deepwater Horizon oil spill. For studies of microbial processes occurring in the deep sea, however, sample handling, pressure, and other changes during sample recovery can subject microorganisms to physiological changes that alter the expression profile of labile messenger RNA. Here we report a comparison of gene expression profiles for whole microbial communities in a bathypelagic water column sample collected in the Eastern Mediterranean Sea using Niskin bottle sample collection and a new water column sampler for studies of marine microbial ecology, the Microbial Sampler – In Situ Incubation Device (MS-SID). For some taxa, gene expression profiles from samples collected and preserved in situ were significantly different from potentially more stressful Niskin sampling and preservation on deck. Some categories of transcribed genes also appear to be affected by sample handling more than others. This suggests that for future studies of marine microbial ecology, particularly targeting deep sea samples, an in situ sample collection and preservation approach should be considered.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0967-0645
1879-0100
DOI:10.1016/j.dsr2.2014.10.020