Oxidoreductases for the remediation of organic pollutants in water - a critical review

Water contamination by various recalcitrant organic aromatic compounds is an emerging environmental issue that is increasingly attracting the attention of environmental scientists. A great majority of these recalcitrant pollutants are industrial wastes, textile dyes, pharmaceuticals, hormones, and p...

Full description

Saved in:
Bibliographic Details
Published inCritical reviews in biotechnology Vol. 38; no. 7; pp. 971 - 988
Main Authors Alneyadi, Aysha Hamad, Rauf, Muhammad A., Ashraf, S. Salman
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 03.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Water contamination by various recalcitrant organic aromatic compounds is an emerging environmental issue that is increasingly attracting the attention of environmental scientists. A great majority of these recalcitrant pollutants are industrial wastes, textile dyes, pharmaceuticals, hormones, and personal care products that are discharged into wastewater. Not surprisingly, various chemical, physical, and biological strategies have been proposed and developed to remove and/or degrade these pollutants from contaminated water bodies. Biological approaches, specifically using oxidoreductase enzymes (such as peroxidases and laccases) for pollutant degradation are a relatively new and a promising research area that has potential advantages over other methods due to their higher efficiency and the ease of handling. This review focuses on the application of different classes of oxidoreductase enzymes to degrade various classes of organic pollutants. In addition to classifying these enzymes based on structural differences, the major factors that can affect their remediation ability, such as the class of peroxidases employed, pH, molecular structure of the pollutant, temperature, and the presence of redox mediators are also examined and discussed. Interestingly, a literature survey combined with our unpublished data suggests that "peroxidases" are a very heterogeneous and diverse family of enzymes and have different pH profiles, temperature optima, thermal stabilities, requirements for redox mediators, and substrate specificities as well as varying detoxification abilities. Additionally, remediation of real-life polluted samples by oxidoreductases is also highlighted as well as a critical look at current challenges and future perspectives.
ISSN:0738-8551
1549-7801
DOI:10.1080/07388551.2017.1423275