An Iterative Spanning Forest Framework for Superpixel Segmentation
Superpixel segmentation has emerged as an important research problem in the areas of image processing and computer vision. In this paper, we propose a framework, namely Iterative Spanning Forest (ISF), in which improved sets of connected superpixels (supervoxels in 3D) can be generated by a sequence...
Saved in:
Published in | IEEE transactions on image processing Vol. 28; no. 7; pp. 3477 - 3489 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Superpixel segmentation has emerged as an important research problem in the areas of image processing and computer vision. In this paper, we propose a framework, namely Iterative Spanning Forest (ISF), in which improved sets of connected superpixels (supervoxels in 3D) can be generated by a sequence of image foresting transforms. In this framework, one can choose the most suitable combination of ISF components for a given application-i.e., 1) a seed sampling strategy; 2) a connectivity function; 3) an adjacency relation; and 4) a seed pixel recomputation procedure. The superpixels in ISF structurally correspond to spanning trees rooted at those seeds. We present five ISF-based methods to illustrate different choices for those components. These methods are compared with a number of state-of-the-art approaches with respect to effectiveness and efficiency. Experiments are carried out on several datasets containing 2D and 3D objects with distinct texture and shape properties, including a high-level application, named sky image segmentation. The theoretical properties of ISF are demonstrated in the supplementary material and the results show ISF-based methods rank consistently among the best for all datasets. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1057-7149 1941-0042 1941-0042 |
DOI: | 10.1109/TIP.2019.2897941 |