Effect of biochars pyrolyzed in N2 and CO2, and feedstock on microbial community in metal(loid)s contaminated soils

Little is known about the effects of applying amendments on soil for immobilizing metal(loid)s on the soil microbial community. Alterations in the microbial community were examined after incubation of treated contaminated soils. One soil was contaminated with Pb and As, a second soil with Cd and Zn....

Full description

Saved in:
Bibliographic Details
Published inEnvironment international Vol. 126; pp. 791 - 801
Main Authors Igalavithana, Avanthi Deshani, Kim, Kyoung-Ho, Jung, Jong-Min, Heo, Hye-Sook, Kwon, Eilhann E., Tack, Filip M.G., Tsang, Daniel C.W., Jeon, Young Jae, Ok, Yong Sik
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2019
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Little is known about the effects of applying amendments on soil for immobilizing metal(loid)s on the soil microbial community. Alterations in the microbial community were examined after incubation of treated contaminated soils. One soil was contaminated with Pb and As, a second soil with Cd and Zn. Red pepper stalk (RPS) and biochars produced from RPS in either N2 atmosphere (RPSN) or CO2 atmosphere (RPSC) were applied at a rate of 2.5% to the two soils and incubated for 30 days. Bacterial communities of control and treated soils were characterized by sequencing 16S rRNA genes using the Illumina MiSeq sequencing. In both soils, bacterial richness increased in the amended soils, though somewhat differently between the treatments. Evenness values decreased significantly, and the final overall diversities were reduced. The neutralization of pH, reduced available concentrations of Pb or Cd, and supplementation of available carbon and surface area could be possible factors affecting the community changes. Biochar amendments caused the soil bacterial communities to become more similar than those in the not amended soils. The bacterial community structures at the phylum and genus levels showed that amendment addition might restore the normal bacterial community of soils, and cause soil bacterial communities in contaminated soils to normalize and stabilize. •Biochar increased bacterial richness in metal(loid) contaminated soils.•High surface area and alkaline pH of biochar were main factors for the bacterial richness.•Biochar normalized the bacterial communities of metal(loid) contaminated soils.•Biochar stabilized and restored normal bacterial community in soils.•Biochar pyrolyzed atmospheres did not influence the bacterial community in soils.
ISSN:0160-4120
1873-6750
DOI:10.1016/j.envint.2019.02.061