Self-assembled phospholipid-based phytosomal nanocarriers as promising platforms for improving oral bioavailability of the anticancer celastrol

[Display omitted] Celastrol (CST) is a promising natural drug of herbal origin that gained a great interest in the recent years by virtue of its wide variety of pharmacological actions. Nowadays, CST is extensively studied as a natural anticancer surrogate with a potential activity against various t...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of pharmaceutics Vol. 535; no. 1-2; pp. 18 - 26
Main Authors Freag, May S., Saleh, Wedad M., Abdallah, Ossama Y.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] Celastrol (CST) is a promising natural drug of herbal origin that gained a great interest in the recent years by virtue of its wide variety of pharmacological actions. Nowadays, CST is extensively studied as a natural anticancer surrogate with a potential activity against various types of cancers. However, CST suffers from many limitations that handicapped its clinical utility such as limited aqueous solubility and poor gastrointestinal absorption which resulted into its low oral bioavailability. This work spotlights, for the first time, development of self-assembled phytosomal nanocarriers (CST-PHY) for improving CST solubility and oral bioavailability. First CST-phospholipid complex was prepared by a simple solvent evaporation technique. Formation of CST-phospholipid complex was confirmed by differential scanning calorimetry (DSC), infrared spectroscopy (IR), powder X-ray diffraction (XRD) and partition coefficient determination. After dispersion into deionized water, CST-phospholipid complex was self-assembled to form CST-PHY. The optimized CST-PHY demonstrated a nanometric particle size of 178.4±7.07nm and a negative zeta potential of −38.7±3.61mV. Comparative in-vitro release study showed the ability of phytosomes to significantly enhance CST release compared with crude drug and physical mixture. Pharmacokinetic studies in rabbits revealed significant improvement in CST-PHY oral bioavailability compared with crude CST evidenced by 4-fold increase in AUC0-8 and 5-fold increase in Cmax of CST-PHY compared with crude CST. Conclusively, the results confirmed the potential of phytosomal nanocarriers to improve CST oral delivery paving the way for its use for oral cancer therapy.
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2017.10.053