Development of a Rolling-Mode Wave Energy Converter for Powering Marine Monitoring Nodes
To address the energy supply demands of the distributed marine monitoring nodes, developing marine sustainable energy sources has become imperative. This study develops a rolling-mode direct wave energy converter, with a series of dynamic simulations and forced motion experiments. Analysis with WAMI...
Saved in:
Published in | Journal of marine science and engineering Vol. 13; no. 7; p. 1248 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To address the energy supply demands of the distributed marine monitoring nodes, developing marine sustainable energy sources has become imperative. This study develops a rolling-mode direct wave energy converter, with a series of dynamic simulations and forced motion experiments. Analysis with WAMIT V5.4 software achieved the typical pitch motion of the device, while ADAMS View 2020 software simulated the working process of the rolling-mode power take off. Forced motion experiments were conducted on a three-degree-of-freedom forced motion platform. The coil parameters were selected based on the open circuit voltage from the benchmark tests. Under an 18° pitch angle and a 0.6 Hz frequency, a single power take off unit could yield a peak short-circuit current of 31.22 mA and an average power density of 31.82 W/m3. Charging experiments demonstrated that two power take off units could charge the 0.1 F capacitor to 3.5 V within 5.5 min to power marine sensors. Compared to previous designs, the straight-track, rolling-mode power take off is advantageous in its startup easiness, simple structure and robustness. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2077-1312 2077-1312 |
DOI: | 10.3390/jmse13071248 |