Optimization of a 5-kW Telecom Phase-Shift DC-DC Converter With Magnetically Integrated Current Doubler

The development of new converter systems with higher power density and/or efficiency offers many degrees of freedom for the design parameters as a large number of system component values have to be defined, where all of which are interdependent, to some extent, on another. Therefore, an automated op...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 58; no. 10; pp. 4736 - 4745
Main Authors Badstuebner, U., Biela, J., Christen, D., Kolar, J. W.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The development of new converter systems with higher power density and/or efficiency offers many degrees of freedom for the design parameters as a large number of system component values have to be defined, where all of which are interdependent, to some extent, on another. Therefore, an automated optimization procedure, based on comprehensive analytical models and the resulting optimal design parameters, e.g., switching frequency or transformer design, to achieve the most compact and/or efficient design, is presented in this paper. In addition, the design of a volume-optimized 400/46-56-V phase-shift dc-dc converter with a current doubler rectifier and the underlying analytical models are also introduced. The power density of the converter is increased by integrating the output inductors in the transformer's core. A new lossless magnetic snubber circuit is introduced, which damps the intrinsic voltage ringing of the rectifier diodes and feeds the ringing energy to the output. The experimental results prove the analytical models and the design procedure. The 5-kW dc-dc converter prototype has a power density of 147 W/in 3 (9 kW/L) and a maximum efficiency of 94.4% at 54-V output voltage and full load.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2010.2103536