G-triplex/hemin DNAzyme mediated colorimetric aptasensor for Escherichia coli O157:H7 detection based on exonuclease III-assisted amplification and aptamers-functionalized magnetic beads

Escherichia coli O157: H7 (E. coli O157: H7) is one of the most common foodborne pathogens and is widespread in food and the environment. Thus, it is significant for rapidly detecting E. coli O157: H7. In this study, a colorimetric aptasensor based on aptamer-functionalized magnetic beads, exonuclea...

Full description

Saved in:
Bibliographic Details
Published inTalanta (Oxford) Vol. 269; p. 125457
Main Authors Pang, Lidong, Wang, Ling'e, Liang, Yaqi, Wang, Zhenghui, Zhang, Wei, Zhao, Qianyu, Yang, Xinyan, Jiang, Yujun
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Escherichia coli O157: H7 (E. coli O157: H7) is one of the most common foodborne pathogens and is widespread in food and the environment. Thus, it is significant for rapidly detecting E. coli O157: H7. In this study, a colorimetric aptasensor based on aptamer-functionalized magnetic beads, exonuclease III (Exo III), and G-triplex/hemin was proposed for the detection of E. coli O157: H7. The functional hairpin HP was designed in the system, which includes two parts of a stem containing the G-triplex sequence and a tail complementary to cDNA. E. coli O157: H7 competed to bind the aptamer (Apt) in the Apt-cDNA complex to obtain cDNA. The cDNA then bound to the tail of HP to trigger Exo III digestion and release the single-stranded DNA containing the G-triplex sequence. G-triplex/hemin DNAzyme could catalyze TMB to produce visible color changes and detectable absorbance signals in the presence of H2O2. Based on the optimal conditions, E. coli O157: H7 could be detected down to 1.3 × 103 CFU/mL, with a wide linear range from 1.3 × 103 to 1.3 × 107 CFU/mL. This method had a distinguished ability to non-target bacteria, which showed good specificity. In addition, the system was successfully applied to detect E. coli O157: H7 in milk samples. [Display omitted] •A simple and universal colorimetric aptasensor was constructed.•G-Triplex/hemin DNAzyme was used to catalyze the color change produced by TMB-H2O2.•The aptasensor based on EXO III-assisted had good specificity and sensitivity.•This protocol successfully detected E. coli O157:H7 in contaminated milk samples.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0039-9140
1873-3573
DOI:10.1016/j.talanta.2023.125457