Evaluation and Wind Field Detection of Airborne Doppler Wind Lidar with Automatic Intelligent Processing in North China

Airborne wind measurement is of great significance for understanding atmospheric motion and meteorological monitoring. In this paper, we present the development and verification of an airborne Doppler wind lidar (ADWL), featuring an approach proposed to integrate a real-time wind retrieval method wi...

Full description

Saved in:
Bibliographic Details
Published inAtmosphere Vol. 15; no. 5; p. 536
Main Authors Zhang, Xu, Lin, Zhifeng, Gao, Chunqing, Han, Chao, Fan, Lin, Zhao, Xinxi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Airborne wind measurement is of great significance for understanding atmospheric motion and meteorological monitoring. In this paper, we present the development and verification of an airborne Doppler wind lidar (ADWL), featuring an approach proposed to integrate a real-time wind retrieval method with an intelligent processing method for automatic adaptive wind detection. Several verification experiments were conducted to evaluate the measurement effectiveness, including comparisons with a calibrated ground-based Doppler wind lidar (GDWL) and a sounding balloon. Compared with the sounding balloon, the ADWL demonstrated mean errors of 0.53 m/s for horizontal wind velocity and 4.60° for wind direction. The correlation coefficients consistently exceeded 0.98 in all linear analyses. Employed in multiple airborne wind detection events in North China at altitudes up to 6600 m, the ADWL provided effective wind field results with a vertical resolution of 50 m and a data rate of 2 Hz. The wind field results obtained during the detection events validate the ADWL’s capabilities in diverse environments and underscore its potential for the comprehensive detection of meteorological information.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos15050536