LFHP-1c improves cognitive function after TBI in mice by reducing oxidative stress through the PGAM5-NRF2-KEAP1 ternary complex

Traumatic brain injury (TBI) is a leading cause of disability and death. Thus, timely and effective secondary brain injury intervention is crucial, with potential to improve the prognosis of TBI. Oxidative stress contributes to post-traumatic secondary cognitive impairment, and the reduction of post...

Full description

Saved in:
Bibliographic Details
Published inHeliyon Vol. 10; no. 17; p. e36820
Main Authors Shao, Wei, Wang, Jia-jun, Niu, Zi-hui, Zhang, Kang, Wang, Shuai, Wang, Yu-Hao, Tang, Yu-hang, Wang, Cheng-Cheng, Hou, Shi-Qiang, Zhou, Dong-Rui, Zhang, Chao, Lin, Ning
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.09.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Traumatic brain injury (TBI) is a leading cause of disability and death. Thus, timely and effective secondary brain injury intervention is crucial, with potential to improve the prognosis of TBI. Oxidative stress contributes to post-traumatic secondary cognitive impairment, and the reduction of post-traumatic oxidative stress effectively enhances cognitive function. Phosphoglycerate-mutating enzyme 5 (PGAM5), a member of the phosphoglycerate transporter enzyme family, is upregulated in TBI and induces mitochondrial autophagy. This further exacerbates damage following TBI. The present study focused on the small molecule drug, LFHP-1c, which is a novel inhibitor of PGAM5. The present study used an in vivo mouse model incorporating a controlled cortical impact-induced TBI, to examine the impact of LFHP-1c on oxidative stress and cognitive function. The present study aimed to determine the impact of LFHP-1c on the PGAM5-Kelch-like ECH-associated protein 1 (KEAP1)- nuclear factor erythroid 2-related factor 2 (NRF2) ternary complex within the TBI context. Results of the present study indicated that LFHP-1c suppresses PGAM5 expression and inhibits the development of the PGAM5-KEAP1-NRF2 ternary complex, thereby promoting the release of NRF2 and KEAP1. This in turn promotes the entry of NRF2 into the nucleus following TBI, leading to increased expression of anti-oxidative stress downstream factors, such as heme oxygenase-1, glutathione peroxidase 1 and superoxide dismutase 1. In addition, LFHP-1c also released KEAP1, leading to mitochondrial Rho GTPase 2 degradation and reducing perinuclear aggregation of mitochondria in the cell, which reduced oxidative stress and ultimately improved cognitive function after TBI.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e36820