Optimizing Polyhydroxyalkanoate production using a novel Bacillus paranthracis isolate: A response surface methodology approach

Microorganisms have emerged as promising resources for producing economical and sustainable bioproducts like Polyhydroxyalkanoate (PHA), a biodegradable polymer that can replace synthetic plastics. In this study, we screened a novel isolate, Bacillus paranthracis RSKS-3 strain, to produce PHA from s...

Full description

Saved in:
Bibliographic Details
Published inHeliyon Vol. 10; no. 15; p. e35398
Main Authors Kumar Sachan, Rohan Samir, Devgon, Inderpal, Mohammad Said Al-Tawaha, Abdel Rahman, Karnwal, Arun
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.08.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Microorganisms have emerged as promising resources for producing economical and sustainable bioproducts like Polyhydroxyalkanoate (PHA), a biodegradable polymer that can replace synthetic plastics. In this study, we screened a novel isolate, Bacillus paranthracis RSKS-3 strain, to produce PHA from sewage water, identifying it using Whole Genome Sequence. This study represents the first report on optimizing PHA production using B. paranthracis RSKS-3, employing Design Expert 12.0 software. Our findings reveal that four factors (temperature, inoculum size, potassium dihydrogen phosphate, and magnesium sulfate) significantly affect PHA production in the Plackett-Burman design experiment. Through Response Surface Methodology, we optimized PHA production to 0.647 g/L with specific values for potassium dihydrogen phosphate (0.55 %), inoculum size (3 %), magnesium sulfate (0.055 %), and a temperature of 35 °C, in agreement with the predicted value of 0.630 g/L. This optimization resulted in a substantial 13.29-fold increase in PHA production from 0.34 g/L to 4.52 g/L, underscoring the promising role of B. paranthracis RSKS-3 in eco-friendly PHA production and advancing sustainable bioproduct development.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e35398