Extended-Range Forecast of Regional Persistent Extreme Cold Events Based on Deep Learning
Regional persistent extreme cold events are meteorological disasters that cause serious harm to people’s lives and production; however, they are very difficult to predict. Low-temperature weather systems and their effects have a significant low-frequency oscillation period (10–20 d and 30–60 d). Thi...
Saved in:
Published in | Atmosphere Vol. 14; no. 10; p. 1572 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Regional persistent extreme cold events are meteorological disasters that cause serious harm to people’s lives and production; however, they are very difficult to predict. Low-temperature weather systems and their effects have a significant low-frequency oscillation period (10–20 d and 30–60 d). This paper uses deep learning to analyze the extended-range time scale and predict regional persistent extreme cold events. The dominant low-frequency oscillation components of cold events are obtained via wavelet transform and Butterworth filtering. The low-frequency oscillation component is decomposed via empirical orthogonal function decomposition to extract the main spatial mode and time coefficient. A convolutional neural network is used to establish the correlation between large-scale circulations and the time coefficient of the low-frequency oscillation component of the lowest temperature. The proposed deep learning model exhibits good prediction accuracy for regional persistent extreme cold events with low-frequency oscillations. |
---|---|
ISSN: | 2073-4433 2073-4433 |
DOI: | 10.3390/atmos14101572 |