Heat Shock Inhibits Radiation-induced Activation of NF-κB via Inhibition of I-κB Kinase
Radiation stimulates signaling cascades that result in the activation of several transcription factors that are believed to play a central role in protective response(s) to ionizing radiation (IR). It is also well established that heat shock alters the regulation of signaling cascades and transcript...
Saved in:
Published in | The Journal of biological chemistry Vol. 274; no. 33; pp. 23061 - 23067 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
13.08.1999
|
Online Access | Get full text |
Cover
Loading…
Summary: | Radiation stimulates signaling cascades that result in the activation of several transcription factors that are believed to play a central role in protective response(s) to ionizing radiation (IR). It is also well established that heat shock alters the regulation of signaling cascades and transcription factors and is a potent radiosensitizing agent. To explore the hypothesis that heat disrupts or alters the regulation of signaling factors activated by IR, the effect of heat shock on IR-induced activation of NF-κB was determined. Irradiated HeLa cells demonstrated transient increases in NF-κB DNA binding activity and NF-κB protein nuclear localization. In addition, irradiated cells demonstrated increased I-κB phosphorylation and decreased I-κBα cytoplasmic protein levels, corresponding temporally with the increase of NF-κB DNA binding. Heat shock prior to IR inhibited the increase in NF-κB DNA binding activity, nuclear localization of NF-κB, and the phosphorylation and subsequent degradation of I-κB. I-κB kinase (IKK) immunoprecipitation assays demonstrated an increase in IKK catalytic activity in response to IR that was inhibited by pretreatment with heat. Kinetic experiments determined that heat-induced inhibition of NF-κB activation in response to IR decayed within 5 h after heating. Furthermore, pretreatment with cycloheximide, to blockde novo protein synthesis, did not alter heat shock inhibition of IR induction of NF-κB. These experiments demonstrate that heat shock transiently inhibits IR induction of NF-κB DNA binding activity by preventing IKK activation and suggests a mechanism independent of protein synthesis. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.274.33.23061 |