Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium

A theoretical investigation of a nano-scale hybrid plasmonic waveguide with a low-index as well as high-index gain medium is presented. The present hybrid plasmonic waveguide structure consists of a Si substrate, a buffer layer, a high-index dielectric rib, a low-index cladding, a low-index nano-slo...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 19; no. 14; pp. 12925 - 12936
Main Authors Dai, Daoxin, Shi, Yaocheng, He, Sailing, Wosinski, Lech, Thylen, Lars
Format Journal Article
LanguageEnglish
Published United States 04.07.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A theoretical investigation of a nano-scale hybrid plasmonic waveguide with a low-index as well as high-index gain medium is presented. The present hybrid plasmonic waveguide structure consists of a Si substrate, a buffer layer, a high-index dielectric rib, a low-index cladding, a low-index nano-slot, and an inverted metal rib. Due to the field enhancement in the nano-slot region, a gain enhancement is observed, i.e., the ratio ∂G/∂g >1, where g and G are the gains of the gain medium and the TM fundamental mode of the hybrid plasmonic waveguide, respectively. For a hybrid plasmonic waveguide with a core width of w(co)=30nm and a slot height of h(slot)=50nm, the intrinsic loss could be compensated when using a low-index medium with a moderate gain of 176dB/cm. When introducing the high-index gain medium for the hybrid plasmonic waveguide, a higher gain is obtained by choosing a wider core width. For the high-index gain case with h(slot)=50nm and w(co)=500nm, a gain of about 200dB/cm also suffices for the compensation of the intrinsic loss.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.19.012925